Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,52 @@
|
|
1 |
import logging
|
2 |
import sys
|
3 |
-
|
4 |
-
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
5 |
-
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
6 |
-
|
7 |
-
import git
|
8 |
-
from llama_index import SimpleDirectoryReader
|
9 |
-
|
10 |
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
11 |
-
documents = SimpleDirectoryReader("./").load_data()
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
import torch
|
16 |
-
|
17 |
from llama_index.llms import LlamaCPP
|
18 |
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt
|
19 |
-
llm = LlamaCPP(
|
20 |
-
# You can pass in the URL to a GGML model to download it automatically
|
21 |
-
model_url='https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q4_K_M.gguf',
|
22 |
-
# optionally, you can set the path to a pre-downloaded model instead of model_url
|
23 |
-
model_path=None,
|
24 |
-
temperature=0.1,
|
25 |
-
max_new_tokens=256,
|
26 |
-
# llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
|
27 |
-
context_window=3900,
|
28 |
-
# kwargs to pass to __call__()
|
29 |
-
generate_kwargs={},
|
30 |
-
# kwargs to pass to __init__()
|
31 |
-
# set to at least 1 to use GPU
|
32 |
-
model_kwargs={"n_gpu_layers": -1},
|
33 |
-
# transform inputs into Llama2 format
|
34 |
-
messages_to_prompt=messages_to_prompt,
|
35 |
-
completion_to_prompt=completion_to_prompt,
|
36 |
-
verbose=True,
|
37 |
-
)
|
38 |
-
|
39 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
40 |
from llama_index.embeddings import LangchainEmbedding
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
)
|
45 |
-
|
46 |
-
service_context = ServiceContext.from_defaults(
|
47 |
-
chunk_size=256,
|
48 |
-
llm=llm,
|
49 |
-
embed_model=embed_model
|
50 |
-
)
|
51 |
-
|
52 |
-
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
53 |
-
|
54 |
-
|
55 |
-
# Create a Streamlit app file (e.g., app.py) and run it
|
56 |
-
|
57 |
-
import streamlit as st
|
58 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
59 |
-
|
60 |
-
def generate_response(prompt):
|
61 |
-
model_name = "gpt2"
|
62 |
-
model = GPT2LMHeadModel.from_pretrained(model_name)
|
63 |
-
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
64 |
-
|
65 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
66 |
-
output = model.generate(input_ids, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2)
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
def main():
|
72 |
st.title("Cloudflare RAG")
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
# User input
|
75 |
user_input = st.text_input("Enter your message:")
|
76 |
|
@@ -83,4 +59,4 @@ def main():
|
|
83 |
st.text_area("ChatGPT Response:", response, height=100)
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
-
main()
|
|
|
1 |
import logging
|
2 |
import sys
|
3 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from llama_index.llms import LlamaCPP
|
6 |
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
8 |
from llama_index.embeddings import LangchainEmbedding
|
9 |
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
12 |
+
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def configure_llama_model():
|
15 |
+
model_url = 'https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q4_K_M.gguf'
|
16 |
+
llm = LlamaCPP(
|
17 |
+
model_url=model_url,
|
18 |
+
temperature=0.1,
|
19 |
+
max_new_tokens=256,
|
20 |
+
context_window=3900,
|
21 |
+
model_kwargs={"n_gpu_layers": -1},
|
22 |
+
messages_to_prompt=messages_to_prompt,
|
23 |
+
completion_to_prompt=completion_to_prompt,
|
24 |
+
verbose=True,
|
25 |
+
)
|
26 |
+
return llm
|
27 |
+
|
28 |
+
def configure_embeddings():
|
29 |
+
embed_model = LangchainEmbedding(
|
30 |
+
HuggingFaceEmbeddings(model_name="thenlper/gte-large")
|
31 |
+
)
|
32 |
+
return embed_model
|
33 |
+
|
34 |
+
def configure_service_context(llm, embed_model):
|
35 |
+
return ServiceContext.from_defaults(chunk_size=256, llm=llm, embed_model=embed_model)
|
36 |
+
|
37 |
+
def initialize_vector_store_index(data_path, service_context):
|
38 |
+
documents = SimpleDirectoryReader(data_path).load_data()
|
39 |
+
return VectorStoreIndex.from_documents(documents, service_context=service_context)
|
40 |
|
41 |
def main():
|
42 |
st.title("Cloudflare RAG")
|
43 |
|
44 |
+
# Configure and initialize components
|
45 |
+
llm = configure_llama_model()
|
46 |
+
embed_model = configure_embeddings()
|
47 |
+
service_context = configure_service_context(llm, embed_model)
|
48 |
+
index = initialize_vector_store_index("/content/Data/", service_context)
|
49 |
+
|
50 |
# User input
|
51 |
user_input = st.text_input("Enter your message:")
|
52 |
|
|
|
59 |
st.text_area("ChatGPT Response:", response, height=100)
|
60 |
|
61 |
if __name__ == "__main__":
|
62 |
+
main()
|