FaYo
model
d8d694f
"""extract feature and search with user query."""
import os
import time
import numpy as np
import yaml
from BCEmbedding.tools.langchain import BCERerank
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.retrievers import ContextualCompressionRetriever
from langchain.vectorstores.faiss import FAISS as Vectorstore
from langchain_community.vectorstores.utils import DistanceStrategy
from loguru import logger
from modelscope import snapshot_download
from sklearn.metrics import precision_recall_curve
from utils.web_configs import WEB_CONFIGS
try:
from utils.rag.file_operation import FileOperation
except:
# 用于 DEBUG
from file_operation import FileOperation
class Retriever:
"""Tokenize and extract features from the project's documents, for use in
the reject pipeline and response pipeline."""
def __init__(self, embeddings, reranker, work_dir: str, reject_throttle: float) -> None:
"""Init with model device type and config."""
self.reject_throttle = reject_throttle
self.rejecter = Vectorstore.load_local(
os.path.join(work_dir, "db_reject"), embeddings=embeddings, allow_dangerous_deserialization=True
)
self.retriever = Vectorstore.load_local(
os.path.join(work_dir, "db_response"),
embeddings=embeddings,
allow_dangerous_deserialization=True,
distance_strategy=DistanceStrategy.MAX_INNER_PRODUCT,
).as_retriever(search_type="similarity", search_kwargs={"score_threshold": 0.15, "k": 30})
self.compression_retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=self.retriever)
def is_reject(self, question, k=30, disable_throttle=False):
"""If no search results below the threshold can be found from the
database, reject this query."""
if disable_throttle:
# for searching throttle during update sample
docs_with_score = self.rejecter.similarity_search_with_relevance_scores(question, k=1)
if len(docs_with_score) < 1:
return True, docs_with_score
return False, docs_with_score
else:
# for retrieve result
# if no chunk passed the throttle, give the max
docs_with_score = self.rejecter.similarity_search_with_relevance_scores(question, k=k)
ret = []
max_score = -1
top1 = None
for doc, score in docs_with_score:
if score >= self.reject_throttle:
ret.append(doc)
if score > max_score:
max_score = score
top1 = (doc, score)
reject = False if len(ret) > 0 else True
return reject, [top1]
def update_throttle(self, config_path: str = "config.yaml", good_questions=[], bad_questions=[]):
"""Update reject throttle based on positive and negative examples."""
if len(good_questions) == 0 or len(bad_questions) == 0:
raise Exception("good and bad question examples cat not be empty.")
questions = good_questions + bad_questions
predictions = []
for question in questions:
self.reject_throttle = -1
_, docs = self.is_reject(question=question, disable_throttle=True)
score = docs[0][1]
predictions.append(max(0, score))
labels = [1 for _ in range(len(good_questions))] + [0 for _ in range(len(bad_questions))]
precision, recall, thresholds = precision_recall_curve(labels, predictions)
# get the best index for sum(precision, recall)
sum_precision_recall = precision[:-1] + recall[:-1]
index_max = np.argmax(sum_precision_recall)
optimal_threshold = max(thresholds[index_max], 0.0)
with open(config_path, "r", encoding="utf-8") as f:
config = yaml.safe_load(f)
config["feature_store"]["reject_throttle"] = float(optimal_threshold)
with open(config_path, "w", encoding="utf8") as f:
yaml.dump(config, f)
logger.info(f"The optimal threshold is: {optimal_threshold}, saved it to {config_path}") # noqa E501
def query(self, question: str, context_max_length: int = 16000): # , tracker: QueryTracker = None):
"""Processes a query and returns the best match from the vector store
database. If the question is rejected, returns None.
Args:
question (str): The question asked by the user.
Returns:
str: The best matching chunk, or None.
str: The best matching text, or None
"""
print(f"DEBUG -1: enter query")
if question is None or len(question) < 1:
print(f"DEBUG 0: len error")
return None, None, []
if len(question) > 512:
logger.warning("input too long, truncate to 512")
question = question[0:512]
# reject, docs = self.is_reject(question=question)
# assert (len(docs) > 0)
# if reject:
# return None, None, [docs[0][0].metadata['source']]
docs = self.compression_retriever.get_relevant_documents(question)
print(f"DEBUG 1: {docs}")
# if tracker is not None:
# tracker.log('retrieve', [doc.metadata['source'] for doc in docs])
chunks = []
context = ""
references = []
# add file text to context, until exceed `context_max_length`
file_opr = FileOperation()
for idx, doc in enumerate(docs):
chunk = doc.page_content
chunks.append(chunk)
if "read" not in doc.metadata:
logger.error(
"If you are using the version before 20240319, please rerun `python3 -m huixiangdou.service.feature_store`"
)
raise Exception("huixiangdou version mismatch")
file_text, error = file_opr.read(doc.metadata["read"])
if error is not None:
# read file failed, skip
print(f"DEBUG 2: error")
continue
source = doc.metadata["source"]
logger.info("target {} file length {}".format(source, len(file_text)))
print(f"DEBUG 3: target {source}, file length {len(file_text)}")
if len(file_text) + len(context) > context_max_length:
if source in references:
continue
references.append(source)
# add and break
add_len = context_max_length - len(context)
if add_len <= 0:
break
chunk_index = file_text.find(chunk)
if chunk_index == -1:
# chunk not in file_text
context += chunk
context += "\n"
context += file_text[0 : add_len - len(chunk) - 1]
else:
start_index = max(0, chunk_index - (add_len - len(chunk)))
context += file_text[start_index : start_index + add_len]
break
if source not in references:
context += file_text
context += "\n"
references.append(source)
context = context[0:context_max_length]
logger.debug("query:{} top1 file:{}".format(question, references[0]))
return "\n".join(chunks), context, [os.path.basename(r) for r in references]
class CacheRetriever:
def __init__(self, config_path: str, max_len: int = 4):
self.cache = dict()
self.max_len = max_len
with open(config_path, "r", encoding="utf-8") as f:
config = yaml.safe_load(f)["feature_store"]
embedding_model_path = config["embedding_model_path"]
reranker_model_path = config["reranker_model_path"]
embedding_model_path = snapshot_download(embedding_model_path, cache_dir=WEB_CONFIGS.RAG_MODEL_DIR)
reranker_model_path = snapshot_download(reranker_model_path, cache_dir=WEB_CONFIGS.RAG_MODEL_DIR)
# load text2vec and rerank model
logger.info("loading test2vec and rerank models")
self.embeddings = HuggingFaceEmbeddings(
model_name=embedding_model_path,
model_kwargs={"device": "cuda"},
encode_kwargs={"batch_size": 1, "normalize_embeddings": True},
)
self.embeddings.client = self.embeddings.client.half()
reranker_args = {"model": reranker_model_path, "top_n": 7, "device": "cuda", "use_fp16": True}
self.reranker = BCERerank(**reranker_args)
def get(self, fs_id: str = "default", config_path="config.yaml", work_dir="workdir"):
if fs_id in self.cache:
self.cache[fs_id]["time"] = time.time()
return self.cache[fs_id]["retriever"]
if not os.path.exists(work_dir) or not os.path.exists(config_path):
return None, "workdir or config.yaml not exist"
with open(config_path, "r", encoding="utf-8") as f:
reject_throttle = yaml.safe_load(f)["feature_store"]["reject_throttle"]
if len(self.cache) >= self.max_len:
# drop the oldest one
del_key = None
min_time = time.time()
for key, value in self.cache.items():
cur_time = value["time"]
if cur_time < min_time:
min_time = cur_time
del_key = key
if del_key is not None:
del_value = self.cache[del_key]
self.cache.pop(del_key)
del del_value["retriever"]
retriever = Retriever(
embeddings=self.embeddings, reranker=self.reranker, work_dir=work_dir, reject_throttle=reject_throttle
)
self.cache[fs_id] = {"retriever": retriever, "time": time.time()}
return retriever
def pop(self, fs_id: str):
if fs_id not in self.cache:
return
del_value = self.cache[fs_id]
self.cache.pop(fs_id)
# manually free memory
del del_value