File size: 19,365 Bytes
d8d694f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import copy
from datetime import datetime
import glob
import json
import os
import pickle
import queue
import shutil
import threading
import time
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional
import cv2
import numpy as np
import streamlit as st
import torch
import wget
from tqdm import tqdm
from utils.digital_human.musetalk.models.unet import PositionalEncoding, UNet
from utils.digital_human.musetalk.models.vae import VAE
from utils.digital_human.musetalk.utils.blending import get_image_blending, get_image_prepare_material, init_face_parsing_model
from utils.digital_human.musetalk.utils.face_parsing import FaceParsing
from utils.digital_human.musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs
from utils.digital_human.musetalk.utils.utils import datagen, load_all_model
from utils.digital_human.musetalk.whisper.audio2feature import Audio2Feature
def setup_ffmpeg_env(model_dir):
# wget https://johnvansickle.com/ffmpeg/releases/ffmpeg-release-amd64-static.tar.xz
# xz -d ffmpeg-release-amd64-static.tar.xz
# tar -xvf ffmpeg-release-amd64-static.tar
ffmpeg_file_name = "ffmpeg-release-amd64-static"
ffmpeg_root = Path(model_dir).joinpath(f"drivers").absolute()
Path(ffmpeg_root).mkdir(exist_ok=True, parents=True)
ffmpeg_dir = None
for ffmpeg_dir_path in Path(ffmpeg_root).iterdir():
if not ffmpeg_dir_path.is_dir():
continue
ffmpeg_dir = str(ffmpeg_dir_path)
if ffmpeg_dir is None:
os.system(
f"cd {str(ffmpeg_root)} && wget https://johnvansickle.com/ffmpeg/releases/{ffmpeg_file_name}.tar.xz && xz -d {ffmpeg_file_name}.tar.xz && tar -xvf {ffmpeg_file_name}.tar"
)
for ffmpeg_dir_path in Path(ffmpeg_root).iterdir():
if not ffmpeg_dir_path.is_dir():
continue
ffmpeg_dir = str(ffmpeg_dir_path)
break
print(f"setting ffmpeg dir: {ffmpeg_dir}")
if str(ffmpeg_dir) not in os.getenv("PATH"):
print(f"add ffmpeg to path : {str(ffmpeg_dir)}")
os.environ["PATH"] = f"{str(ffmpeg_dir)}:{os.environ['PATH']}"
def init_digital_model(model_dir, use_float16=False):
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
from huggingface_hub import snapshot_download
# 直接下载单个文件
muse_talk_model_path = snapshot_download(repo_id="TMElyralab/MuseTalk", local_dir=model_dir)
sd_model_path = snapshot_download(repo_id="stabilityai/sd-vae-ft-mse", local_dir=Path(model_dir).joinpath("sd-vae-ft-mse"))
whisper_pth_path = Path(model_dir).joinpath(r"whisper/tiny.pt")
whisper_pth_path.parent.mkdir(parents=True, exist_ok=True)
if not whisper_pth_path.exists():
wget.download(
url="https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
out=str(whisper_pth_path),
)
# load model weights
print("Loading models...")
audio_processor, vae, unet, pe = load_all_model(
audio2feature_model_path=str(whisper_pth_path),
vae_model_path=sd_model_path,
unet_model_dict={
"unet_config": str(Path(muse_talk_model_path).joinpath("musetalk", "musetalk.json")),
"model_path": str(Path(muse_talk_model_path).joinpath("musetalk", "pytorch_model.bin")),
},
)
if use_float16 is True:
pe = pe.half()
vae.vae = vae.vae.half()
unet.model = unet.model.half()
print("Loaded models done !...")
return audio_processor, vae, unet, pe
def load_pose_model(model_dir):
from mmpose.apis import init_model
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
from huggingface_hub import hf_hub_download
# 直接下载单个文件
dw_pose_path = hf_hub_download(
repo_id="yzd-v/DWPose",
filename="dw-ll_ucoco_384.pth",
local_dir=Path(model_dir).joinpath("dwpose"),
)
config_file = r"./utils/digital_human/musetalk/utils/dwpose/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py"
pose_model = init_model(config_file, dw_pose_path, device="cuda")
return pose_model
def load_face_parsing_model(model_dir):
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
from huggingface_hub import hf_hub_download
model_dir = Path(model_dir).joinpath("face-parse-bisent")
model_dir.mkdir(parents=True, exist_ok=True)
resnet_path = Path(model_dir).joinpath("resnet18-5c106cde.pth")
if not resnet_path.exists():
wget.download(
url="https://download.pytorch.org/models/resnet18-5c106cde.pth",
out=str(resnet_path),
)
# 79999_iter.pth 地址: https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812
# 非官方
_ = hf_hub_download(
repo_id="ManyOtherFunctions/face-parse-bisent",
filename="79999_iter.pth",
local_dir=str(model_dir),
)
face_parsing_model = init_face_parsing_model(
resnet_path=str(resnet_path),
face_model_pth=Path(model_dir).joinpath("79999_iter.pth"),
)
return face_parsing_model
def video2imgs(vid_path, save_path, ext=".png", cut_frame=10000000):
cap = cv2.VideoCapture(vid_path)
count = 0
while True:
if count > cut_frame:
break
ret, frame = cap.read()
if ret:
cv2.imwrite(f"{save_path}/{count:08d}.png", frame)
count += 1
else:
break
def osmakedirs(path_list):
for path in path_list:
os.makedirs(path) if not os.path.exists(path) else None
@dataclass
class HandlerDigitalHuman:
audio_processor: Optional[Audio2Feature] = None
vae: Optional[VAE] = None
unet: Optional[UNet] = None
pe: Optional[PositionalEncoding] = None
face_parsing_model: Optional[FaceParsing] = None
frame_list_cycle: Optional[List] = None
coord_list_cycle: Optional[List] = None
input_latent_list_cycle: Optional[List] = None
mask_coords_list_cycle: Optional[List] = None
mask_list_cycle: Optional[List] = None
fps: int = 25
bbox_shift: int = 0
use_float16: bool = False
@torch.no_grad()
class Avatar:
def __init__(self, avatar_id, work_dir, model_dir, video_path, bbox_shift, batch_size, fps, preparation_force):
self.avatar_id = avatar_id
self.video_path = video_path
self.bbox_shift = bbox_shift
self.avatar_path = work_dir
self.model_dir = model_dir
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
self.coords_path = f"{self.avatar_path}/coords.pkl"
self.latents_out_path = f"{self.avatar_path}/latents.pt"
self.video_out_path = f"{self.avatar_path}/vid_output/"
self.mask_out_path = f"{self.avatar_path}/mask"
self.mask_coords_path = f"{self.avatar_path}/mask_coords.pkl"
self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
self.avatar_info = {"avatar_id": avatar_id, "video_path": video_path, "bbox_shift": bbox_shift}
self.preparation_force = preparation_force
self.batch_size = batch_size
self.idx = 0
# 模型初始化,防止 pose 导致 OOM,放到最后加载
face_parsing_model = load_face_parsing_model(self.model_dir)
audio_processor, vae, unet, pe = init_digital_model(self.model_dir, use_float16=False)
pe = pe.half()
vae.vae = vae.vae.half()
unet.model = unet.model.half()
self.init(vae_model=vae, face_parsing_model=face_parsing_model)
self.model_handler = HandlerDigitalHuman(
audio_processor=audio_processor,
vae=vae,
unet=unet,
pe=pe,
face_parsing_model=face_parsing_model,
frame_list_cycle=self.frame_list_cycle,
coord_list_cycle=self.coord_list_cycle,
input_latent_list_cycle=self.input_latent_list_cycle,
mask_coords_list_cycle=self.mask_coords_list_cycle,
mask_list_cycle=self.mask_list_cycle,
fps=fps,
bbox_shift=bbox_shift,
)
def init(self, vae_model, face_parsing_model):
need_to_prepare = False
if self.preparation_force and os.path.exists(self.avatar_path):
shutil.rmtree(self.avatar_path)
need_to_prepare = True
elif not os.path.exists(self.avatar_path):
# 预处理文件不存在,需要进行预处理
need_to_prepare = True
elif os.path.exists(self.avatar_path):
# 预处理文件存在,判断 bbox_shift 是否匹配,不匹配需要重新进行预处理
with open(self.avatar_info_path, "r") as f:
avatar_info = json.load(f)
if avatar_info["bbox_shift"] != self.avatar_info["bbox_shift"]:
need_to_prepare = True
shutil.rmtree(self.avatar_path)
if need_to_prepare is False:
# 对文件再进行一个判断,避免中途出错导致文件没生成全
for prepare_file in [
self.full_imgs_path,
self.coords_path,
self.latents_out_path,
self.video_out_path,
self.mask_out_path,
self.mask_coords_path,
self.avatar_info_path,
]:
if not os.path.exists(prepare_file):
# 如有文件不存在,则需要重新生成
print(f"Missing file {prepare_file}, will process prerpare...")
need_to_prepare = True
shutil.rmtree(self.avatar_path)
break
if need_to_prepare:
print("*********************************")
print(f" creating avator: {self.avatar_id}")
print("*********************************")
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
self.prepare_material(vae_model=vae_model, face_parsing_model=face_parsing_model)
self.input_latent_list_cycle = torch.load(self.latents_out_path)
with open(self.coords_path, "rb") as f:
self.coord_list_cycle = pickle.load(f)
input_img_list = glob.glob(os.path.join(self.full_imgs_path, "*.[jpJP][pnPN]*[gG]"))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.frame_list_cycle = read_imgs(input_img_list)
with open(self.mask_coords_path, "rb") as f:
self.mask_coords_list_cycle = pickle.load(f)
input_mask_list = glob.glob(os.path.join(self.mask_out_path, "*.[jpJP][pnPN]*[gG]"))
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.mask_list_cycle = read_imgs(input_mask_list)
def prepare_material(self, vae_model, face_parsing_model):
print("preparing data materials ... ...")
with open(self.avatar_info_path, "w") as f:
json.dump(self.avatar_info, f)
if os.path.isfile(self.video_path):
video2imgs(self.video_path, self.full_imgs_path, ext="png")
else:
print(f"copy files in {self.video_path}")
files = os.listdir(self.video_path)
files.sort()
files = [file for file in files if file.split(".")[-1] == "png"]
for filename in files:
shutil.copyfile(f"{self.video_path}/{filename}", f"{self.full_imgs_path}/{filename}")
input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, "*.[jpJP][pnPN]*[gG]")))
print("extracting landmarks...")
pose_model = load_pose_model(self.model_dir)
coord_list, frame_list = get_landmark_and_bbox(input_img_list, pose_model, self.bbox_shift)
del pose_model
input_latent_list = []
idx = -1
# maker if the bbox is not sufficient
coord_placeholder = (0.0, 0.0, 0.0, 0.0)
for bbox, frame in zip(coord_list, frame_list):
idx = idx + 1
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
crop_frame = frame[y1:y2, x1:x2]
resized_crop_frame = cv2.resize(crop_frame, (256, 256), interpolation=cv2.INTER_LANCZOS4)
latents = vae_model.get_latents_for_unet(resized_crop_frame)
input_latent_list.append(latents)
self.frame_list_cycle = frame_list + frame_list[::-1]
self.coord_list_cycle = coord_list + coord_list[::-1]
self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
self.mask_coords_list_cycle = []
self.mask_list_cycle = []
for i, frame in enumerate(tqdm(self.frame_list_cycle)):
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png", frame)
face_box = self.coord_list_cycle[i]
mask, crop_box = get_image_prepare_material(frame, face_box, face_parsing_model)
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png", mask)
self.mask_coords_list_cycle += [crop_box]
self.mask_list_cycle.append(mask)
with open(self.mask_coords_path, "wb") as f:
pickle.dump(self.mask_coords_list_cycle, f)
with open(self.coords_path, "wb") as f:
pickle.dump(self.coord_list_cycle, f)
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path))
def process_frames(self, res_frame_queue, video_len, skip_save_images, save_dir_name):
print(video_len)
while True:
if self.idx >= video_len - 1:
break
try:
res_frame = res_frame_queue.get(block=True, timeout=1)
except queue.Empty:
continue
bbox = self.coord_list_cycle[self.idx % (len(self.coord_list_cycle))]
ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx % (len(self.frame_list_cycle))])
x1, y1, x2, y2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2 - x1, y2 - y1))
except:
continue
mask = self.mask_list_cycle[self.idx % (len(self.mask_list_cycle))]
mask_crop_box = self.mask_coords_list_cycle[self.idx % (len(self.mask_coords_list_cycle))]
# combine_frame = get_image(ori_frame,res_frame,bbox)
combine_frame = get_image_blending(ori_frame, res_frame, bbox, mask, mask_crop_box)
if skip_save_images is False:
cv2.imwrite(f"{self.avatar_path}/{save_dir_name}/{str(self.idx).zfill(8)}.png", combine_frame)
self.idx = self.idx + 1
def inference(self, audio_path, output_vid, fps, skip_save_images=False):
tmp_tag = "tmp_" + datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
os.makedirs(self.avatar_path + f"/{tmp_tag}", exist_ok=True)
print("start inference")
############################################## extract audio feature ##############################################
start_time = time.time()
whisper_feature = self.model_handler.audio_processor.audio2feat(audio_path)
whisper_chunks = self.model_handler.audio_processor.feature2chunks(feature_array=whisper_feature, fps=fps)
print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms")
############################################## inference batch by batch ##############################################
video_num = len(whisper_chunks)
res_frame_queue = queue.Queue()
self.idx = 0
# # Create a sub-thread and start it
process_thread = threading.Thread(
target=self.process_frames, args=(res_frame_queue, video_num, skip_save_images, tmp_tag)
)
process_thread.start()
gen = datagen(whisper_chunks, self.input_latent_list_cycle, self.batch_size)
start_time = time.time()
for i, (whisper_batch, latent_batch) in enumerate(tqdm(gen, total=int(np.ceil(float(video_num) / self.batch_size)))):
audio_feature_batch = torch.from_numpy(whisper_batch)
audio_feature_batch = audio_feature_batch.to(
device=self.model_handler.unet.device, dtype=self.model_handler.unet.model.dtype
)
audio_feature_batch = self.model_handler.pe(audio_feature_batch)
latent_batch = latent_batch.to(dtype=self.model_handler.unet.model.dtype)
timesteps = torch.tensor([0], device="cuda")
pred_latents = self.model_handler.unet.model(
latent_batch, timesteps, encoder_hidden_states=audio_feature_batch
).sample
recon = self.model_handler.vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_queue.put(res_frame)
# Close the queue and sub-thread after all tasks are completed
process_thread.join()
print("Total process time of {} frames including saving images = {}s".format(video_num, time.time() - start_time))
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {self.avatar_path}/{tmp_tag}/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 {self.avatar_path}/{tmp_tag}.mp4"
print(cmd_img2video)
os.system(cmd_img2video)
# output_vid = os.path.join(self.video_out_path, out_vid_name + ".mp4") # on
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {self.avatar_path}/{tmp_tag}.mp4 {output_vid}"
print(cmd_combine_audio)
os.system(cmd_combine_audio)
os.remove(f"{self.avatar_path}/{tmp_tag}.mp4")
shutil.rmtree(f"{self.avatar_path}/{tmp_tag}")
print(f"result is save to {output_vid}")
return str(output_vid)
@st.cache_resource
def digital_human_preprocess(model_dir, use_float16, video_path, work_dir, fps, bbox_shift):
avatar = Avatar(
avatar_id="lelemiao",
work_dir=work_dir,
model_dir=model_dir,
video_path=video_path,
bbox_shift=bbox_shift,
batch_size=8,
fps=fps,
preparation_force=False,
)
setup_ffmpeg_env(model_dir)
return avatar
@torch.no_grad()
def gen_digital_human_video(
avatar_handler: Avatar,
audio_path,
work_dir,
video_path,
fps,
):
output_vid_image_dir = Path(avatar_handler.video_out_path).joinpath(f"{Path(video_path).stem}+{Path(audio_path).stem}")
output_vid_file_path = output_vid_image_dir.with_suffix(".mp4")
output_vid = avatar_handler.inference(
audio_path=audio_path, # wav file
output_vid=str(output_vid_file_path),
fps=fps,
skip_save_images=False,
)
return output_vid
if __name__ == "__main__":
data_preparation = False
video_path = "./work_dirs/tts_wavs/2024-06-05-20-48-53.wav"
bbox_shift = 5
avatar = Avatar(
avatar_id="lelemiao", video_path=video_path, bbox_shift=bbox_shift, batch_size=4, preparation=data_preparation
)
avatar.inference(
audio_path=r"./work_dirs/tts_wavs/2024-06-05-20-48-53.wav",
out_vid_name="avatar_1",
fps=25,
skip_save_images=False,
)
|