Spaces:
Build error
Build error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from transformers import AutoModel, AutoConfig, AutoTokenizer
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
os.system("gdown https://drive.google.com/uc?id=1whDb0yL_Kqoyx-sIw0sS5xTfb6r_9nlJ")
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
+
|
13 |
+
def init_params(module_lst):
|
14 |
+
for module in module_lst:
|
15 |
+
for param in module.parameters():
|
16 |
+
if param.dim() > 1:
|
17 |
+
torch.nn.init.xavier_uniform_(param)
|
18 |
+
return
|
19 |
+
|
20 |
+
|
21 |
+
class Custom_bert(nn.Module):
|
22 |
+
def __init__(self, model_dir):
|
23 |
+
super().__init__()
|
24 |
+
|
25 |
+
# load base model
|
26 |
+
config = AutoConfig.from_pretrained(model_dir)
|
27 |
+
config.update({"output_hidden_states": True,
|
28 |
+
"hidden_dropout_prob": 0.0,
|
29 |
+
"layer_norm_eps": 1e-7})
|
30 |
+
|
31 |
+
self.base = AutoModel.from_pretrained(model_dir, config=config)
|
32 |
+
|
33 |
+
dim = self.base.encoder.layer[0].output.dense.bias.shape[0]
|
34 |
+
|
35 |
+
self.dropout = nn.Dropout(p=0.2)
|
36 |
+
self.high_dropout = nn.Dropout(p=0.5)
|
37 |
+
|
38 |
+
# weights for weighted layer average
|
39 |
+
n_weights = 24
|
40 |
+
weights_init = torch.zeros(n_weights).float()
|
41 |
+
weights_init.data[:-1] = -3
|
42 |
+
self.layer_weights = torch.nn.Parameter(weights_init)
|
43 |
+
|
44 |
+
# attention head
|
45 |
+
self.attention = nn.Sequential(
|
46 |
+
nn.Linear(1024, 1024),
|
47 |
+
nn.Tanh(),
|
48 |
+
nn.Linear(1024, 1),
|
49 |
+
nn.Softmax(dim=1)
|
50 |
+
)
|
51 |
+
self.cls = nn.Sequential(
|
52 |
+
nn.Linear(dim, 1)
|
53 |
+
)
|
54 |
+
init_params([self.cls, self.attention])
|
55 |
+
|
56 |
+
def reini_head(self):
|
57 |
+
init_params([self.cls, self.attention])
|
58 |
+
return
|
59 |
+
|
60 |
+
def forward(self, input_ids, attention_mask):
|
61 |
+
base_output = self.base(input_ids=input_ids,
|
62 |
+
attention_mask=attention_mask)
|
63 |
+
|
64 |
+
# weighted average of all encoder outputs
|
65 |
+
cls_outputs = torch.stack(
|
66 |
+
[self.dropout(layer) for layer in base_output['hidden_states'][-24:]], dim=0
|
67 |
+
)
|
68 |
+
cls_output = (
|
69 |
+
torch.softmax(self.layer_weights, dim=0).unsqueeze(1).unsqueeze(1).unsqueeze(1) * cls_outputs).sum(
|
70 |
+
0)
|
71 |
+
|
72 |
+
# multisample dropout
|
73 |
+
logits = torch.mean(
|
74 |
+
torch.stack(
|
75 |
+
[torch.sum(self.attention(self.high_dropout(cls_output)) * cls_output, dim=1) for _ in range(5)],
|
76 |
+
dim=0,
|
77 |
+
),
|
78 |
+
dim=0,
|
79 |
+
)
|
80 |
+
return self.cls(logits)
|
81 |
+
|
82 |
+
|
83 |
+
def get_batches(input, tokenizer, batch_size=128, max_length=256, device='cpu'):
|
84 |
+
out = tokenizer(input, return_tensors='pt', max_length=max_length, padding='max_length')
|
85 |
+
out['input_ids'], out['attention_mask'] = out['input_ids'].to(device), out['attention_mask'].to(device)
|
86 |
+
input_id_split = torch.split(out['input_ids'], max_length, dim=1)
|
87 |
+
attention_split = torch.split(out['attention_mask'], max_length, dim=1)
|
88 |
+
|
89 |
+
input_id_batches = []
|
90 |
+
attention_batches = []
|
91 |
+
|
92 |
+
i = 0
|
93 |
+
input_length = len(input_id_split)
|
94 |
+
|
95 |
+
while i * batch_size < input_length:
|
96 |
+
if i * batch_size + batch_size <= input_length:
|
97 |
+
input_id_batches.append(list(input_id_split[i * batch_size:(i + 1) * batch_size]))
|
98 |
+
attention_batches.append(list(attention_split[i * batch_size:(i + 1) * batch_size]))
|
99 |
+
else:
|
100 |
+
input_id_batches.append(list(input_id_split[i * batch_size:input_length]))
|
101 |
+
attention_batches.append(list(attention_split[i * batch_size:input_length]))
|
102 |
+
i += 1
|
103 |
+
|
104 |
+
if input_id_batches[-1][-1].shape[1] < max_length:
|
105 |
+
input_id_batches[-1][-1] = F.pad(input_id_batches[-1][-1],
|
106 |
+
(1, max_length - input_id_batches[-1][-1].shape[1] - 1),
|
107 |
+
value=0)
|
108 |
+
attention_batches[-1][-1] = F.pad(attention_batches[-1][-1],
|
109 |
+
(1, max_length - attention_batches[-1][-1].shape[1] - 1),
|
110 |
+
value=1)
|
111 |
+
|
112 |
+
input_id_batches = [torch.cat(batch, dim=0) for batch in input_id_batches]
|
113 |
+
attention_batches = [torch.cat(batch, dim=0) for batch in attention_batches]
|
114 |
+
|
115 |
+
return tuple(zip(input_id_batches, attention_batches))
|
116 |
+
|
117 |
+
|
118 |
+
def predict(input, tokenizer, model, batch_size=128, max_length=256, max_val=-4, min_val=3, score=100):
|
119 |
+
device = model.base.device
|
120 |
+
batches = get_batches(input, tokenizer, batch_size, max_length, device)
|
121 |
+
|
122 |
+
predictions = []
|
123 |
+
|
124 |
+
with torch.no_grad():
|
125 |
+
for input_ids, attention_mask in batches:
|
126 |
+
pred = model(input_ids, attention_mask)
|
127 |
+
pred = score * (pred - min_val) / (max_val - min_val)
|
128 |
+
predictions.append(pred)
|
129 |
+
|
130 |
+
predictions = torch.cat(predictions, dim=0)
|
131 |
+
mean, std = predictions.mean().cpu().item(), predictions.std().cpu().item()
|
132 |
+
mean, std = round(mean, 2), round(std, 2)
|
133 |
+
if np.isnan(std):
|
134 |
+
return f"The reading difficulty score is {mean}."
|
135 |
+
else:
|
136 |
+
return f"""The reading difficulty score is {mean} with a standard deviation of {std}.
|
137 |
+
\nThe 95% confidence interval of the score is {mean - 2 * std} to {mean + 2 * std}."""
|
138 |
+
|
139 |
+
|
140 |
+
if __name__ == "__main__":
|
141 |
+
deberta_loc = "deberta_large_0.pt"
|
142 |
+
deberta_tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-large", model_max_length=256)
|
143 |
+
|
144 |
+
model = Custom_bert("microsoft/deberta-large")
|
145 |
+
model.load_state_dict(torch.load(deberta_loc))
|
146 |
+
model.eval().to(device)
|
147 |
+
|
148 |
+
|
149 |
+
description = """
|
150 |
+
This tool attempts to estimate how difficult a piece of text is to read by a school child.
|
151 |
+
The underlying model has been developed based on expert ranking of text difficulty for students from grade 3 to 12.
|
152 |
+
The score has been scaled to range from zero (very easy) to one hundred (very difficult).
|
153 |
+
Very long passages will be broken up and reported with the average as well as the standard deviation of the difficulty score.
|
154 |
+
"""
|
155 |
+
|
156 |
+
interface = gr.Interface(fn=lambda x: predict(x, deberta_tokenizer, model, batch_size=4),
|
157 |
+
inputs=gr.inputs.Textbox(lines = 7, label = "Text:",
|
158 |
+
placeholder = "Insert text to be scored here."),
|
159 |
+
outputs='text',
|
160 |
+
title = "Reading Difficulty Analyser",
|
161 |
+
description = description)
|
162 |
+
interface.launch()
|
163 |
+
|