Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,110 +2,74 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
|
5 |
-
def
|
6 |
-
"""
|
7 |
try:
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
# Load Whisper for speech recognition
|
12 |
-
transcriber = pipeline(
|
13 |
"automatic-speech-recognition",
|
14 |
-
model="openai/whisper-tiny",
|
15 |
-
|
16 |
)
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
"text-classification",
|
21 |
-
model="
|
22 |
-
|
23 |
)
|
24 |
|
25 |
-
return
|
26 |
except Exception as e:
|
27 |
-
print(f"
|
28 |
return None, None
|
29 |
|
30 |
-
def
|
31 |
-
"""
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
return "Please provide audio", "No audio detected"
|
36 |
-
|
37 |
try:
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
if not text.strip():
|
48 |
-
return "No speech detected", "Empty transcription"
|
49 |
-
print(f"Transcribed text: {text}") # Debug output
|
50 |
-
except Exception as e:
|
51 |
-
return f"Transcription error: {str(e)}", "Failed to process audio"
|
52 |
|
|
|
|
|
53 |
# Analyze emotion
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
emotion_mapping = {
|
61 |
-
"Joy": "Happy/Joyful",
|
62 |
-
"Sadness": "Sad/Melancholic",
|
63 |
-
"Anger": "Angry/Frustrated",
|
64 |
-
"Fear": "Anxious/Fearful",
|
65 |
-
"Surprise": "Surprised/Astonished",
|
66 |
-
"Love": "Warm/Affectionate",
|
67 |
-
"Neutral": "Neutral/Calm"
|
68 |
-
}
|
69 |
-
|
70 |
-
display_emotion = emotion_mapping.get(emotion, emotion)
|
71 |
-
return display_emotion, confidence
|
72 |
-
|
73 |
-
except Exception as e:
|
74 |
-
return f"Emotion analysis error: {str(e)}", "Analysis failed"
|
75 |
-
|
76 |
except Exception as e:
|
77 |
-
|
|
|
78 |
|
79 |
-
# Create interface
|
80 |
interface = gr.Interface(
|
81 |
-
fn=
|
82 |
-
inputs=
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
87 |
outputs=[
|
88 |
-
gr.Textbox(label="
|
89 |
-
gr.Textbox(label="Confidence
|
90 |
],
|
91 |
title="Speech Emotion Analyzer",
|
92 |
-
description=""
|
93 |
-
This tool analyzes the emotional tone of speech, detecting emotions like:
|
94 |
-
- Happy/Joyful
|
95 |
-
- Sad/Melancholic
|
96 |
-
- Angry/Frustrated
|
97 |
-
- Anxious/Fearful
|
98 |
-
- Surprised/Astonished
|
99 |
-
- Warm/Affectionate
|
100 |
-
- Neutral/Calm
|
101 |
-
""",
|
102 |
-
theme=gr.themes.Base()
|
103 |
)
|
104 |
|
105 |
if __name__ == "__main__":
|
106 |
-
interface.launch(
|
107 |
-
debug=True,
|
108 |
-
server_name="0.0.0.0",
|
109 |
-
server_port=7860,
|
110 |
-
share=True
|
111 |
-
)
|
|
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
|
5 |
+
def create_analyzers():
|
6 |
+
"""Initialize speech and emotion analyzers"""
|
7 |
try:
|
8 |
+
# Use tiny whisper model for speed and reliability
|
9 |
+
speech_recognizer = pipeline(
|
|
|
|
|
|
|
10 |
"automatic-speech-recognition",
|
11 |
+
model="openai/whisper-tiny.en",
|
12 |
+
chunk_length_s=30
|
13 |
)
|
14 |
|
15 |
+
# Use smaller emotion classifier
|
16 |
+
emotion_classifier = pipeline(
|
17 |
"text-classification",
|
18 |
+
model="SamLowe/roberta-base-go_emotions",
|
19 |
+
top_k=1
|
20 |
)
|
21 |
|
22 |
+
return speech_recognizer, emotion_classifier
|
23 |
except Exception as e:
|
24 |
+
print(f"Model loading error: {e}")
|
25 |
return None, None
|
26 |
|
27 |
+
def analyze_tone(audio_file):
|
28 |
+
"""Analyze the emotional tone of speech"""
|
29 |
+
if audio_file is None:
|
30 |
+
return "No input", "N/A"
|
31 |
+
|
|
|
|
|
32 |
try:
|
33 |
+
# Get models
|
34 |
+
speech_recognizer, emotion_classifier = create_analyzers()
|
35 |
+
|
36 |
+
# Transcribe audio
|
37 |
+
transcription = speech_recognizer(audio_file)
|
38 |
+
text = transcription["text"]
|
39 |
+
|
40 |
+
if not text.strip():
|
41 |
+
return "No speech detected", "N/A"
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
print(f"Transcribed text: {text}") # For debugging
|
44 |
+
|
45 |
# Analyze emotion
|
46 |
+
result = emotion_classifier(text)[0][0]
|
47 |
+
emotion = result['label'].replace('_', ' ').title()
|
48 |
+
confidence = f"{result['score']:.1%}"
|
49 |
+
|
50 |
+
return emotion, confidence
|
51 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
except Exception as e:
|
53 |
+
print(f"Analysis error: {e}")
|
54 |
+
return f"Error: {str(e)}", "N/A"
|
55 |
|
56 |
+
# Create minimal interface
|
57 |
interface = gr.Interface(
|
58 |
+
fn=analyze_tone,
|
59 |
+
inputs=[
|
60 |
+
gr.Audio(
|
61 |
+
sources=["microphone", "upload"],
|
62 |
+
type="filepath",
|
63 |
+
label="Audio Input"
|
64 |
+
)
|
65 |
+
],
|
66 |
outputs=[
|
67 |
+
gr.Textbox(label="Emotion"),
|
68 |
+
gr.Textbox(label="Confidence")
|
69 |
],
|
70 |
title="Speech Emotion Analyzer",
|
71 |
+
description="Record or upload audio to detect the emotional tone.",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
)
|
73 |
|
74 |
if __name__ == "__main__":
|
75 |
+
interface.launch(server_name="0.0.0.0", share=True)
|
|
|
|
|
|
|
|
|
|