Spaces:
Running
on
Zero
Running
on
Zero
import io | |
import spaces | |
import argparse | |
import numpy as np | |
import torch | |
from decord import cpu, VideoReader, bridge | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers import BitsAndBytesConfig | |
MODEL_PATH = "THUDM/cogvlm2-llama3-caption" | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[ | |
0] >= 8 else torch.float16 | |
parser = argparse.ArgumentParser(description="CogVLM2-Video CLI Demo") | |
parser.add_argument('--quant', type=int, choices=[4, 8], help='Enable 4-bit or 8-bit precision loading', default=4) | |
args = parser.parse_args([]) | |
def load_video(video_data, strategy='chat'): | |
bridge.set_bridge('torch') | |
mp4_stream = video_data | |
num_frames = 24 | |
decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0)) | |
frame_id_list = None | |
total_frames = len(decord_vr) | |
if strategy == 'base': | |
clip_end_sec = 60 | |
clip_start_sec = 0 | |
start_frame = int(clip_start_sec * decord_vr.get_avg_fps()) | |
end_frame = min(total_frames, | |
int(clip_end_sec * decord_vr.get_avg_fps())) if clip_end_sec is not None else total_frames | |
frame_id_list = np.linspace(start_frame, end_frame - 1, num_frames, dtype=int) | |
elif strategy == 'chat': | |
timestamps = decord_vr.get_frame_timestamp(np.arange(total_frames)) | |
timestamps = [i[0] for i in timestamps] | |
max_second = round(max(timestamps)) + 1 | |
frame_id_list = [] | |
for second in range(max_second): | |
closest_num = min(timestamps, key=lambda x: abs(x - second)) | |
index = timestamps.index(closest_num) | |
frame_id_list.append(index) | |
if len(frame_id_list) >= num_frames: | |
break | |
video_data = decord_vr.get_batch(frame_id_list) | |
video_data = video_data.permute(3, 0, 1, 2) | |
return video_data | |
# Configure quantization | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=TORCH_TYPE, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4" | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_PATH, | |
trust_remote_code=True, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_PATH, | |
torch_dtype=TORCH_TYPE, | |
trust_remote_code=True, | |
quantization_config=quantization_config, | |
device_map="auto" | |
).eval() | |
def predict(prompt, video_data, temperature): | |
strategy = 'chat' | |
video = load_video(video_data, strategy=strategy) | |
history = [] | |
query = prompt | |
inputs = model.build_conversation_input_ids( | |
tokenizer=tokenizer, | |
query=query, | |
images=[video], | |
history=history, | |
template_version=strategy | |
) | |
inputs = { | |
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE), | |
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE), | |
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE), | |
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]], | |
} | |
gen_kwargs = { | |
"max_new_tokens": 2048, | |
"pad_token_id": 128002, | |
"top_k": 1, | |
"do_sample": False, | |
"top_p": 0.1, | |
"temperature": temperature, | |
} | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, **gen_kwargs) | |
outputs = outputs[:, inputs['input_ids'].shape[1]:] | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
def inference(video, prompt): | |
temperature = 0.1 | |
video_data = open(video, 'rb').read() | |
response = predict(prompt, video_data, temperature) | |
return response |