Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import gradio as gr | |
import json | |
# Initialize the pipeline with the new model | |
pipe = pipeline("text-generation", model="Blexus/Quble_test_model_v1_INSTRUCT_v1") | |
DATABASE_PATH = "database.json" | |
def load_database(): | |
try: | |
with open(DATABASE_PATH, "r") as file: | |
return json.load(file) | |
except FileNotFoundError: | |
return {} | |
def save_database(database): | |
with open(DATABASE_PATH, "w") as file: | |
json.dump(database, file) | |
def format_prompt(message, system, history): | |
# Format prompt according to the new template | |
prompt = f"SYSTEM: {system}\n<|endofsystem|>\n" | |
for user_prompt, bot_response in history: | |
prompt += f"USER: {user_prompt}\n\n\nASSISTANT: {bot_response}<|endoftext|>\n" | |
prompt += f"USER: {message}\n\n\nASSISTANT:" | |
return prompt | |
def generate( | |
prompt, system, history, temperature=0.9, max_new_tokens=4096, top_p=0.9, repetition_penalty=1.2, | |
): | |
database = load_database() # Load the database | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
formatted_prompt = format_prompt(prompt, system, history) | |
if formatted_prompt in database: | |
response = database[formatted_prompt] | |
else: | |
# Use the pipeline to generate the response | |
response = pipe(formatted_prompt, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)[0]["generated_text"] | |
response_text = response.split("ASSISTANT:")[1].strip() # Extract the assistant's response | |
database[formatted_prompt] = response_text | |
save_database(database) # Save the updated database | |
yield response_text | |
customCSS = """ | |
#component-7 { # this is the default element ID of the chat component | |
height: 1600px; # adjust the height as needed | |
flex-grow: 4; | |
} | |
""" | |
additional_inputs=[ | |
gr.Textbox( | |
label="System prompt", | |
value="You are a helpful assistant, with no access to external functions.", | |
info="System prompt", | |
interactive=True, | |
), | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=1024, | |
minimum=64, | |
maximum=4096, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.ChatInterface( | |
generate, | |
additional_inputs=additional_inputs, | |
) | |
demo.queue().launch(debug=True) |