icn_v2_DEMO / app.py
wop's picture
Update app.py
7116955 verified
raw
history blame
3.16 kB
from transformers import pipeline
import gradio as gr
import json
# Initialize the pipeline with the new model
pipe = pipeline("text-generation", model="Blexus/Quble_test_model_v1_INSTRUCT_v1")
DATABASE_PATH = "database.json"
def load_database():
try:
with open(DATABASE_PATH, "r") as file:
return json.load(file)
except FileNotFoundError:
return {}
def save_database(database):
with open(DATABASE_PATH, "w") as file:
json.dump(database, file)
def format_prompt(message, system, history):
# Format prompt according to the new template
prompt = f"SYSTEM: {system}\n<|endofsystem|>\n"
for user_prompt, bot_response in history:
prompt += f"USER: {user_prompt}\n\n\nASSISTANT: {bot_response}<|endoftext|>\n"
prompt += f"USER: {message}\n\n\nASSISTANT:"
return prompt
def generate(
prompt, system, history, temperature=0.9, max_new_tokens=4096, top_p=0.9, repetition_penalty=1.2,
):
database = load_database() # Load the database
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
formatted_prompt = format_prompt(prompt, system, history)
if formatted_prompt in database:
response = database[formatted_prompt]
else:
# Use the pipeline to generate the response
response = pipe(formatted_prompt, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)[0]["generated_text"]
response_text = response.split("ASSISTANT:")[1].strip() # Extract the assistant's response
database[formatted_prompt] = response_text
save_database(database) # Save the updated database
yield response_text
customCSS = """
#component-7 { # this is the default element ID of the chat component
height: 1600px; # adjust the height as needed
flex-grow: 4;
}
"""
additional_inputs=[
gr.Textbox(
label="System prompt",
value="You are a helpful assistant, with no access to external functions.",
info="System prompt",
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1024,
minimum=64,
maximum=4096,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
)
demo.queue().launch(debug=True)