icn_v2_DEMO / app.py
wop's picture
Update app.py
03a5566 verified
raw
history blame
3.09 kB
from transformers import pipeline
import gradio as gr
import json
import time
# Initialize the pipeline with the new model
pipe = pipeline("text-generation", model="Blexus/Quble_test_model_v1_INSTRUCT_v2")
def format_prompt(message, system, history):
prompt = f"SYSTEM: {system} <|endofsystem|>"
for entry in history:
if len(entry) == 2:
user_prompt, bot_response = entry
prompt += f"USER: {user_prompt} <|endofuser|>\nASSISTANT: {bot_response}<|endoftext|>\n"
prompt += f"USER: {message}<|endofuser|>\nASSISTANT:"
return prompt
def generate(prompt, system, history, temperature=0.9, max_new_tokens=4096, top_p=0.9, repetition_penalty=1.2):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
formatted_prompt = format_prompt(prompt, system, history)
response_text = "We are sorry but Quble doesn't know how to answer."
# Generate the response without streaming
try:
response = pipe(formatted_prompt, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)[0]["generated_text"]
response_text = response.split("ASSISTANT:")[-1].strip()
# Simulate streaming by yielding parts of the response
accumulated_response = "" # To keep track of the full response
for char in response_text:
accumulated_response += char # Append the new character
yield accumulated_response # Yield the accumulated response
time.sleep(0.02) # Add a slight delay to simulate typing
except Exception as e:
print(f"Error generating response: {e}")
customCSS = """
#component-7 {
height: 1600px;
flex-grow: 4;
}
"""
additional_inputs = [
gr.Textbox(
label="System prompt",
value="You are a helpful intelligent assistant. Your name is Quble.",
info="System prompt",
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1024,
minimum=64,
maximum=4096,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
)
demo.set_css(customCSS)
demo.queue().launch(debug=True)