Spaces:
Sleeping
Sleeping
Pragya Jatav
commited on
Commit
·
b3ae5e5
1
Parent(s):
1581ecc
version changes
Browse files- Streamlit_functions.py +178 -3
- __pycache__/Streamlit_functions.cpython-310.pyc +0 -0
- pages/2_Scenario_Planner.py +109 -51
- summary_df.pkl +1 -1
Streamlit_functions.py
CHANGED
@@ -37,6 +37,19 @@ spend_cols = ['tv_broadcast_spend',
|
|
37 |
'cm_spend',
|
38 |
'audio_spend',
|
39 |
'email_spend']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
metric_cols = ['tv_broadcast_grp',
|
41 |
'tv_cable_grp',
|
42 |
'stream_video_imp',
|
@@ -64,6 +77,20 @@ channels = [
|
|
64 |
'DIGITAL PARTNERS',
|
65 |
'AUDIO',
|
66 |
'EMAIL']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
contribution_cols = [
|
68 |
'Broadcast TV_Prospects',
|
69 |
'Cable TV_Prospects',
|
@@ -877,14 +904,162 @@ def scenario_spend_forecasting(delta_df,start_date,end_date):
|
|
877 |
|
878 |
df_modified = delta_df.merge(key_df,on = "Channel_name",how = "inner")
|
879 |
df_modified2 = df_modified.merge(data1,on = "Channels",how ="outer")
|
880 |
-
df_modified2["Forecasted Spends"] =( df_modified2["last_year_spends"]*(1+df_modified2["Delta_percent"]/100)).
|
|
|
|
|
881 |
df_modified2.index = df_modified2["Channels"]
|
882 |
-
df_modified2["Spend Change"] = df_modified2["Delta_percent"]
|
883 |
-
df_modified2["
|
|
|
884 |
df_modified3 = df_modified2[["Last Year Spends","Forecasted Spends","Spend Change"]].transpose()
|
885 |
# df_modified2["forecasted_spends"] =
|
886 |
# # df_modified = delta_percent
|
887 |
# # df_modified["Optimised Spends"] = df_modified["Current Spends"]*
|
|
|
888 |
return df_modified3
|
889 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
890 |
|
|
|
37 |
'cm_spend',
|
38 |
'audio_spend',
|
39 |
'email_spend']
|
40 |
+
spend_cols2 = ['tv_broadcast_spend',
|
41 |
+
'tv_cable_spend',
|
42 |
+
'stream_video_spend',
|
43 |
+
'olv_spend',
|
44 |
+
'disp_prospect_spend',
|
45 |
+
'disp_retarget_spend',
|
46 |
+
'social_prospect_spend',
|
47 |
+
'social_retarget_spend',
|
48 |
+
'search_brand_spend',
|
49 |
+
'search_nonbrand_spend',
|
50 |
+
'cm_spend',
|
51 |
+
'audio_spend',
|
52 |
+
'email_spend', 'Date']
|
53 |
metric_cols = ['tv_broadcast_grp',
|
54 |
'tv_cable_grp',
|
55 |
'stream_video_imp',
|
|
|
77 |
'DIGITAL PARTNERS',
|
78 |
'AUDIO',
|
79 |
'EMAIL']
|
80 |
+
channels2 = [
|
81 |
+
'BROADCAST TV',
|
82 |
+
'CABLE TV',
|
83 |
+
'CONNECTED & OTT TV',
|
84 |
+
'VIDEO',
|
85 |
+
'DISPLAY PROSPECTING',
|
86 |
+
'DISPLAY RETARGETING',
|
87 |
+
'SOCIAL PROSPECTING',
|
88 |
+
'SOCIAL RETARGETING',
|
89 |
+
'SEARCH BRAND',
|
90 |
+
'SEARCH NON-BRAND',
|
91 |
+
'DIGITAL PARTNERS',
|
92 |
+
'AUDIO',
|
93 |
+
'EMAIL','Date']
|
94 |
contribution_cols = [
|
95 |
'Broadcast TV_Prospects',
|
96 |
'Cable TV_Prospects',
|
|
|
904 |
|
905 |
df_modified = delta_df.merge(key_df,on = "Channel_name",how = "inner")
|
906 |
df_modified2 = df_modified.merge(data1,on = "Channels",how ="outer")
|
907 |
+
# df_modified2["Forecasted Spends"] =( df_modified2["last_year_spends"]*(1+df_modified2["Delta_percent"]/100)).astype(int)
|
908 |
+
df_modified2["Forecasted Spends"] =( df_modified2["last_year_spends"]*(1+df_modified2["Delta_percent"]/100)).astype(int)
|
909 |
+
|
910 |
df_modified2.index = df_modified2["Channels"]
|
911 |
+
df_modified2["Spend Change"] = df_modified2["Delta_percent"].astype(int)
|
912 |
+
# df_modified2["Forecasted Spends"] = df_modified2["Forecasted Spends"].astype(int)
|
913 |
+
df_modified2["Last Year Spends"] = df_modified2["last_year_spends"].astype(int)
|
914 |
df_modified3 = df_modified2[["Last Year Spends","Forecasted Spends","Spend Change"]].transpose()
|
915 |
# df_modified2["forecasted_spends"] =
|
916 |
# # df_modified = delta_percent
|
917 |
# # df_modified["Optimised Spends"] = df_modified["Current Spends"]*
|
918 |
+
|
919 |
return df_modified3
|
920 |
|
921 |
+
def scenario_spend_forecasting2(delta_df,start_date,end_date):
|
922 |
+
|
923 |
+
key_df = pd.DataFrame()
|
924 |
+
key_df["Channel_name"] = ["Email",
|
925 |
+
"DisplayRetargeting",
|
926 |
+
"\xa0Video",
|
927 |
+
"BroadcastTV",
|
928 |
+
"SocialRetargeting",
|
929 |
+
"Connected&OTTTV",
|
930 |
+
"SearchBrand",
|
931 |
+
"Audio",
|
932 |
+
"SocialProspecting",
|
933 |
+
"CableTV",
|
934 |
+
"DisplayProspecting",
|
935 |
+
"SearchNon-brand",
|
936 |
+
"DigitalPartners"]
|
937 |
+
key_df["Channels"] = [
|
938 |
+
"EMAIL",
|
939 |
+
"DISPLAY RETARGETING",
|
940 |
+
"VIDEO",
|
941 |
+
"BROADCAST TV",
|
942 |
+
"SOCIAL RETARGETING",
|
943 |
+
"CONNECTED & OTT TV",
|
944 |
+
"SEARCH BRAND",
|
945 |
+
"AUDIO",
|
946 |
+
"SOCIAL PROSPECTING",
|
947 |
+
"CABLE TV",
|
948 |
+
"DISPLAY PROSPECTING",
|
949 |
+
"SEARCH NON-BRAND",
|
950 |
+
"DIGITAL PARTNERS"
|
951 |
+
]
|
952 |
+
|
953 |
+
import math
|
954 |
+
start_date = pd.to_datetime(start_date)
|
955 |
+
end_date = pd.to_datetime(end_date)
|
956 |
+
|
957 |
+
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
|
958 |
+
cur_data = cur_data[spend_cols2]
|
959 |
+
cur_data.columns = channels2
|
960 |
+
|
961 |
+
cur_data["Date2"] = cur_data["Date"]+ pd.Timedelta(days=5)
|
962 |
+
# cur_data["Date"] = delta_df["Date"]
|
963 |
+
cur_data["Date_diff"] = (cur_data["Date"]-start_date).dt.days
|
964 |
+
cur_data["Date_diff_months"] =(np.ceil(cur_data["Date_diff"] / 30))
|
965 |
+
|
966 |
+
data2 = cur_data.groupby("Date_diff_months").agg({
|
967 |
+
'Date':"min",
|
968 |
+
"Date2":"max"
|
969 |
+
}).reset_index()
|
970 |
+
|
971 |
+
|
972 |
+
data1 = cur_data.groupby("Date_diff_months").agg({
|
973 |
+
'BROADCAST TV':"sum",
|
974 |
+
'CABLE TV':"sum",
|
975 |
+
'CONNECTED & OTT TV':"sum",
|
976 |
+
'VIDEO':"sum",
|
977 |
+
'DISPLAY PROSPECTING':"sum",
|
978 |
+
'DISPLAY RETARGETING':"sum",
|
979 |
+
'SOCIAL PROSPECTING':"sum",
|
980 |
+
'SOCIAL RETARGETING':"sum",
|
981 |
+
'SEARCH BRAND':"sum",
|
982 |
+
'SEARCH NON-BRAND':"sum",
|
983 |
+
'DIGITAL PARTNERS':"sum",
|
984 |
+
'AUDIO':"sum",
|
985 |
+
'EMAIL':"sum"
|
986 |
+
}).transpose()
|
987 |
+
|
988 |
+
months_list = cur_data["Date_diff_months"].unique()
|
989 |
+
data1["Channels"]=data1.index
|
990 |
+
df_modified = delta_df.merge(key_df,on = "Channel_name",how = "inner")
|
991 |
+
df_modified2 = df_modified.merge(data1,on = "Channels",how ="outer")
|
992 |
+
df_modified2.index = df_modified2["Channels"]
|
993 |
+
|
994 |
+
data3 = pd.DataFrame(index = data1.index)
|
995 |
+
for c in months_list:
|
996 |
+
data3[c] = df_modified2[c]*(1+df_modified2["Delta_percent"]/100)
|
997 |
+
|
998 |
+
df1 = df_modified2[months_list].transpose()
|
999 |
+
df1["Metrics"] = "Last Year Spends"
|
1000 |
+
|
1001 |
+
data3 = data3.transpose()
|
1002 |
+
data3 = data3.astype(int)
|
1003 |
+
data2.index = data2["Date_diff_months"]
|
1004 |
+
data2.columns = ["Date_diff_months","start date","end date"]
|
1005 |
+
data3["start date"] = data2["start date"].dt.date
|
1006 |
+
data3["end date"] = data2["end date"].dt.date
|
1007 |
+
data3["Month"] = data3.index
|
1008 |
+
cols = ["Month","start date","end date",'BROADCAST TV',
|
1009 |
+
'CABLE TV',
|
1010 |
+
'CONNECTED & OTT TV',
|
1011 |
+
'VIDEO',
|
1012 |
+
'DISPLAY PROSPECTING',
|
1013 |
+
'DISPLAY RETARGETING',
|
1014 |
+
'SOCIAL PROSPECTING',
|
1015 |
+
'SOCIAL RETARGETING',
|
1016 |
+
'SEARCH BRAND',
|
1017 |
+
'SEARCH NON-BRAND',
|
1018 |
+
'DIGITAL PARTNERS',
|
1019 |
+
'AUDIO',
|
1020 |
+
'EMAIL']
|
1021 |
+
# data3["Metrics"] = "Forecasted Year Spends"
|
1022 |
+
|
1023 |
+
# df2 = df_modified2["Delta_percent"].transpose()
|
1024 |
+
# df2["Metrics"] = "Percent Change"
|
1025 |
+
# df_modified2["last_year_spends"] =
|
1026 |
+
|
1027 |
+
# data3 = pd.DataFrame(index = data1.index)
|
1028 |
+
# for c in months_list:
|
1029 |
+
# for idx in data3.index:
|
1030 |
+
# data3[c][idx] = df_modified2[c][idx]*df_modified2["Delta_percent"]
|
1031 |
+
|
1032 |
+
|
1033 |
+
# data1 = data1[['Date',"Date2",'BROADCAST TV',
|
1034 |
+
# 'CABLE TV',
|
1035 |
+
# 'CONNECTED & OTT TV',
|
1036 |
+
# 'VIDEO','DISPLAY PROSPECTING',
|
1037 |
+
# 'DISPLAY RETARGETING',
|
1038 |
+
# 'SOCIAL PROSPECTING',
|
1039 |
+
# 'SOCIAL RETARGETING',
|
1040 |
+
# 'SEARCH BRAND',
|
1041 |
+
# 'SEARCH NON-BRAND',
|
1042 |
+
# 'DIGITAL PARTNERS',
|
1043 |
+
# 'AUDIO',
|
1044 |
+
# 'EMAIL',
|
1045 |
+
# ]]
|
1046 |
+
# data1[channels] = data1[channels].astype(int)
|
1047 |
+
# data1["Date"] = data1["Date"].dt.date
|
1048 |
+
# data1["Date2"] = data1["Date2"].dt.date
|
1049 |
+
# # pd.DataFrame(cur_data[channels].groupby("Date_diff_months").sum().transpose()).reset_index()
|
1050 |
+
# # # data1.columns = ["Channels","last_year_spends"]
|
1051 |
+
|
1052 |
+
# # df_modified = delta_df.merge(key_df,on = "Channel_name",how = "inner")
|
1053 |
+
# # df_modified2 = df_modified.merge(data1,on = "Channels",how ="outer")
|
1054 |
+
# # df_modified2["Forecasted Spends"] =( df_modified2["last_year_spends"]*(1+df_modified2["Delta_percent"]/100)).apply(numerize)
|
1055 |
+
# # df_modified2.index = df_modified2["Channels"]
|
1056 |
+
# # df_modified2["Spend Change"] = df_modified2["Delta_percent"]
|
1057 |
+
# # df_modified2["Last Year Spends"] = df_modified2["last_year_spends"].apply(numerize)
|
1058 |
+
# # df_modified3 = df_modified2[["Last Year Spends","Forecasted Spends","Spend Change"]].transpose()
|
1059 |
+
# # # df_modified2["forecasted_spends"] =
|
1060 |
+
# # # # df_modified = delta_percent
|
1061 |
+
# # # # df_modified["Optimised Spends"] = df_modified["Current Spends"]*
|
1062 |
+
# # spend_cols1 = pd.DataFrame(spend_cols)[0].to_list()
|
1063 |
+
|
1064 |
+
return data3[cols]
|
1065 |
|
__pycache__/Streamlit_functions.cpython-310.pyc
CHANGED
Binary files a/__pycache__/Streamlit_functions.cpython-310.pyc and b/__pycache__/Streamlit_functions.cpython-310.pyc differ
|
|
pages/2_Scenario_Planner.py
CHANGED
@@ -164,18 +164,18 @@ def update_sales():
|
|
164 |
)
|
165 |
|
166 |
|
167 |
-
def update_all_spends_abs_slider():
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
|
178 |
-
|
179 |
|
180 |
|
181 |
# def update_all_spends_abs_slider():
|
@@ -1351,7 +1351,7 @@ if auth_status == True:
|
|
1351 |
# )
|
1352 |
|
1353 |
with st.expander("Channel Spends Simulator", expanded=True):
|
1354 |
-
_columns1 = st.columns((
|
1355 |
with _columns1[0]:
|
1356 |
optimization_selection = st.selectbox(
|
1357 |
"Optimize", options=["Media Spends", target], key="optimization_key"
|
@@ -1416,6 +1416,23 @@ if auth_status == True:
|
|
1416 |
)
|
1417 |
|
1418 |
with _columns2[2]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1419 |
min_value = round(_scenario.actual_total_spends * 0.5)
|
1420 |
max_value = round(_scenario.actual_total_spends * 1.5)
|
1421 |
st.session_state["total_spends_change_abs_slider_options"] = [
|
@@ -1449,16 +1466,19 @@ if auth_status == True:
|
|
1449 |
on_change=update_sales,
|
1450 |
)
|
1451 |
with _columns2[2]:
|
1452 |
-
st.
|
1453 |
-
"Overall Lower Bound"
|
|
|
1454 |
)
|
1455 |
with _columns2[3]:
|
1456 |
-
|
1457 |
-
|
|
|
|
|
1458 |
)
|
1459 |
|
1460 |
-
min_value = round(_scenario.actual_total_sales *
|
1461 |
-
max_value = round(_scenario.actual_total_sales * 1
|
1462 |
# st.write(min_value)
|
1463 |
# st.write(max_value)
|
1464 |
# for value in range(min_value, max_value + 1, int(100)):
|
@@ -1503,7 +1523,7 @@ if auth_status == True:
|
|
1503 |
)
|
1504 |
|
1505 |
st.markdown("""<hr class="spends-heading-seperator">""", unsafe_allow_html=True)
|
1506 |
-
_columns = st.columns((
|
1507 |
with _columns[0]:
|
1508 |
generate_spending_header("Channel")
|
1509 |
with _columns[1]:
|
@@ -1536,7 +1556,7 @@ if auth_status == True:
|
|
1536 |
# st.write(st.session_state["scenario"].channels[channel_name].modified_total_spends)
|
1537 |
# st.write(st.session_state["scenario"].channels[channel_name].bounds)
|
1538 |
# st.write(st.session_state["scenario"].channels[channel_name].channel_bounds_min)
|
1539 |
-
_columns = st.columns((
|
1540 |
with _columns[0]:
|
1541 |
st.write(channel_name_formating(channel_name))
|
1542 |
bin_placeholder = st.container()
|
@@ -1554,11 +1574,6 @@ if auth_status == True:
|
|
1554 |
# st.write(max_value)
|
1555 |
##print(st.session_state[channel_name])
|
1556 |
|
1557 |
-
|
1558 |
-
|
1559 |
-
|
1560 |
-
|
1561 |
-
|
1562 |
_columns_min = st.columns(2)
|
1563 |
with _columns_min[0]:
|
1564 |
spend_input = st.text_input(
|
@@ -1622,14 +1637,37 @@ if auth_status == True:
|
|
1622 |
current_channel_spends
|
1623 |
)
|
1624 |
st.session_state["acutual_predicted"]["Delta"].append(spends_delta)
|
1625 |
-
|
1626 |
-
|
1627 |
-
|
1628 |
-
|
1629 |
-
|
1630 |
-
|
1631 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1632 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1633 |
with _columns[3]:
|
1634 |
# sales
|
1635 |
current_channel_sales = float(_channel_class.modified_total_sales)
|
@@ -1638,13 +1676,38 @@ if auth_status == True:
|
|
1638 |
st.session_state["acutual_predicted"]["Old_sales"].append(actual_channel_sales)
|
1639 |
st.session_state["acutual_predicted"]["New_sales"].append(current_channel_sales)
|
1640 |
#st.write(actual_channel_sales)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1641 |
|
1642 |
-
|
1643 |
-
|
1644 |
-
|
1645 |
-
|
1646 |
-
|
1647 |
-
|
|
|
|
|
1648 |
|
1649 |
with _columns[4]:
|
1650 |
|
@@ -1866,7 +1929,10 @@ if auth_status == True:
|
|
1866 |
end_date1 = current_date + relativedelta(months = 12)- relativedelta(years=1)
|
1867 |
|
1868 |
forecasted_table_df = sf.scenario_spend_forecasting(summary_df_sorted,start_date1,end_date1)
|
1869 |
-
st.
|
|
|
|
|
|
|
1870 |
|
1871 |
st.markdown("""
|
1872 |
<style>
|
@@ -1880,24 +1946,16 @@ if auth_status == True:
|
|
1880 |
</style>
|
1881 |
""", unsafe_allow_html=True)
|
1882 |
|
1883 |
-
def save_report_forecast(forecasted_table_df):
|
1884 |
from io import BytesIO
|
1885 |
-
# excel_file_path = filename+ '.xlsx'
|
1886 |
-
# forecasted_table_df.to_excel(excel_file_path, index=False)
|
1887 |
-
|
1888 |
# Convert the DataFrame to an Excel file in memory
|
1889 |
excel_file = BytesIO()
|
1890 |
with pd.ExcelWriter(excel_file, engine='openpyxl') as writer:
|
1891 |
-
forecasted_table_df.to_excel(writer, index=
|
1892 |
-
|
1893 |
# Seek to the beginning of the BytesIO buffer
|
1894 |
excel_file.seek(0)
|
1895 |
return excel_file
|
1896 |
-
# message_container = st.empty()
|
1897 |
-
# with message_container:
|
1898 |
-
# st.write(f'<div class="yellow-container">{"Report Saved!"}</div>', unsafe_allow_html=True)
|
1899 |
-
# time.sleep(5)
|
1900 |
-
# st.empty()
|
1901 |
|
1902 |
st.subheader("Download Report")
|
1903 |
report_name = st.text_input(
|
@@ -1910,7 +1968,7 @@ if auth_status == True:
|
|
1910 |
|
1911 |
st.download_button(
|
1912 |
"Download Report",
|
1913 |
-
data = save_report_forecast(forecasted_table_df),
|
1914 |
file_name = report_name+".xlsx",
|
1915 |
mime="application/vnd.ms-excel",
|
1916 |
# on_click=lambda: save_report_forecast(forecasted_table_df,report_name),
|
|
|
164 |
)
|
165 |
|
166 |
|
167 |
+
# def update_all_spends_abs_slider():
|
168 |
+
# actual_spends = _scenario.actual_total_spends
|
169 |
+
# if validate_input(st.session_state["total_spends_change_abs_slider"]):
|
170 |
+
# modified_spends = extract_number_for_string(
|
171 |
+
# st.session_state["total_spends_change_abs_slider"]
|
172 |
+
# )
|
173 |
+
# st.session_state["total_spends_change"] = round(
|
174 |
+
# ((modified_spends / actual_spends) - 1) * 100
|
175 |
+
# )
|
176 |
+
# st.session_state["total_spends_change_abs"] = numerize(modified_spends, 1)
|
177 |
|
178 |
+
# update_all_spends()
|
179 |
|
180 |
|
181 |
# def update_all_spends_abs_slider():
|
|
|
1351 |
# )
|
1352 |
|
1353 |
with st.expander("Channel Spends Simulator", expanded=True):
|
1354 |
+
_columns1 = st.columns((1.5, 1.5, 1,1))
|
1355 |
with _columns1[0]:
|
1356 |
optimization_selection = st.selectbox(
|
1357 |
"Optimize", options=["Media Spends", target], key="optimization_key"
|
|
|
1416 |
)
|
1417 |
|
1418 |
with _columns2[2]:
|
1419 |
+
overall_lower_bound = st.number_input(
|
1420 |
+
"Overall Lower Bound for Spends",
|
1421 |
+
value = 50
|
1422 |
+
# key = overall_lower_bound,
|
1423 |
+
# on_change=partial(update_data_bound_min_overall)
|
1424 |
+
)
|
1425 |
+
with _columns2[3]:
|
1426 |
+
overall_upper_bound = st.number_input(
|
1427 |
+
"Overall Upper Bound for Spends",
|
1428 |
+
value = 50
|
1429 |
+
# key = overall_upper_bound,
|
1430 |
+
# on_change=partial(update_data_bound_max_overall)
|
1431 |
+
)
|
1432 |
+
|
1433 |
+
|
1434 |
+
|
1435 |
+
|
1436 |
min_value = round(_scenario.actual_total_spends * 0.5)
|
1437 |
max_value = round(_scenario.actual_total_spends * 1.5)
|
1438 |
st.session_state["total_spends_change_abs_slider_options"] = [
|
|
|
1466 |
on_change=update_sales,
|
1467 |
)
|
1468 |
with _columns2[2]:
|
1469 |
+
overall_lower_bound = st.number_input(
|
1470 |
+
"Overall Lower Bound for Spends",
|
1471 |
+
value = 50
|
1472 |
)
|
1473 |
with _columns2[3]:
|
1474 |
+
|
1475 |
+
overall_upper_bound = st.number_input(
|
1476 |
+
"Overall Upper Bound for Spends",
|
1477 |
+
value = 50
|
1478 |
)
|
1479 |
|
1480 |
+
min_value = round(_scenario.actual_total_sales * (1-overall_lower_bound/100))
|
1481 |
+
max_value = round(_scenario.actual_total_sales * (1+overall_upper_bound/100))
|
1482 |
# st.write(min_value)
|
1483 |
# st.write(max_value)
|
1484 |
# for value in range(min_value, max_value + 1, int(100)):
|
|
|
1523 |
)
|
1524 |
|
1525 |
st.markdown("""<hr class="spends-heading-seperator">""", unsafe_allow_html=True)
|
1526 |
+
_columns = st.columns((1.5,2.5,2,2, 1))
|
1527 |
with _columns[0]:
|
1528 |
generate_spending_header("Channel")
|
1529 |
with _columns[1]:
|
|
|
1556 |
# st.write(st.session_state["scenario"].channels[channel_name].modified_total_spends)
|
1557 |
# st.write(st.session_state["scenario"].channels[channel_name].bounds)
|
1558 |
# st.write(st.session_state["scenario"].channels[channel_name].channel_bounds_min)
|
1559 |
+
_columns = st.columns((1.5,2.5,2,2, 1))
|
1560 |
with _columns[0]:
|
1561 |
st.write(channel_name_formating(channel_name))
|
1562 |
bin_placeholder = st.container()
|
|
|
1574 |
# st.write(max_value)
|
1575 |
##print(st.session_state[channel_name])
|
1576 |
|
|
|
|
|
|
|
|
|
|
|
1577 |
_columns_min = st.columns(2)
|
1578 |
with _columns_min[0]:
|
1579 |
spend_input = st.text_input(
|
|
|
1637 |
current_channel_spends
|
1638 |
)
|
1639 |
st.session_state["acutual_predicted"]["Delta"].append(spends_delta)
|
1640 |
+
_spend_cols = st.columns(2)
|
1641 |
+
with _spend_cols[0]:
|
1642 |
+
st.metric(
|
1643 |
+
label="Actual Spends",
|
1644 |
+
value=format_numbers(actual_channel_spends),
|
1645 |
+
# delta=numerize(spends_delta, 1),
|
1646 |
+
# label_visibility="collapsed",
|
1647 |
+
)
|
1648 |
+
|
1649 |
+
st.metric(
|
1650 |
+
label="Change",
|
1651 |
+
value= format_numbers_f(spends_delta),
|
1652 |
+
delta=numerize(spends_delta, 1),
|
1653 |
+
# label_visibility="collapsed",
|
1654 |
+
)
|
1655 |
+
with _spend_cols[1]:
|
1656 |
+
st.metric(
|
1657 |
+
label="Simulated Spends",
|
1658 |
+
value=format_numbers(current_channel_spends),
|
1659 |
+
# delta=numerize(spends_delta, 1),
|
1660 |
+
# label_visibility="collapsed",
|
1661 |
+
)
|
1662 |
|
1663 |
+
st.metric(
|
1664 |
+
label="Percent Change",
|
1665 |
+
value= numerize(( spends_delta/actual_channel_spends)*100,0) +"%",
|
1666 |
+
delta=numerize(spends_delta, 1),
|
1667 |
+
# label_visibility="collapsed",
|
1668 |
+
)
|
1669 |
+
|
1670 |
+
|
1671 |
with _columns[3]:
|
1672 |
# sales
|
1673 |
current_channel_sales = float(_channel_class.modified_total_sales)
|
|
|
1676 |
st.session_state["acutual_predicted"]["Old_sales"].append(actual_channel_sales)
|
1677 |
st.session_state["acutual_predicted"]["New_sales"].append(current_channel_sales)
|
1678 |
#st.write(actual_channel_sales)
|
1679 |
+
|
1680 |
+
_prospect_cols = st.columns(2)
|
1681 |
+
with _prospect_cols[0]:
|
1682 |
+
st.metric(
|
1683 |
+
# target,
|
1684 |
+
label="Actual Prospects",
|
1685 |
+
value= format_numbers_f(actual_channel_sales),
|
1686 |
+
# delta=numerize(sales_delta, 1),
|
1687 |
+
# label_visibility="collapsed",
|
1688 |
+
)
|
1689 |
+
st.metric(
|
1690 |
+
label="Change",
|
1691 |
+
value= format_numbers_f(_channel_class.delta_sales),
|
1692 |
+
delta=numerize(sales_delta, 1),
|
1693 |
+
# label_visibility="collapsed",
|
1694 |
+
)
|
1695 |
+
with _prospect_cols[1]:
|
1696 |
+
st.metric(
|
1697 |
+
label="Simulated Prospects",
|
1698 |
+
value= format_numbers_f(current_channel_sales),
|
1699 |
+
# delta=numerize(sales_delta, 1),
|
1700 |
+
# label_visibility="collapsed",
|
1701 |
+
)
|
1702 |
|
1703 |
+
st.metric(
|
1704 |
+
label="Percent Change",
|
1705 |
+
value= numerize((_channel_class.delta_sales/actual_channel_sales)*100,0) +"%",
|
1706 |
+
delta=numerize(sales_delta, 1),
|
1707 |
+
# label_visibility="collapsed",
|
1708 |
+
)
|
1709 |
+
|
1710 |
+
|
1711 |
|
1712 |
with _columns[4]:
|
1713 |
|
|
|
1929 |
end_date1 = current_date + relativedelta(months = 12)- relativedelta(years=1)
|
1930 |
|
1931 |
forecasted_table_df = sf.scenario_spend_forecasting(summary_df_sorted,start_date1,end_date1)
|
1932 |
+
st.dataframe(forecasted_table_df)
|
1933 |
+
|
1934 |
+
forecasted_table_df2 = sf.scenario_spend_forecasting2(summary_df_sorted,start_date1,end_date1)
|
1935 |
+
st.dataframe(forecasted_table_df2)
|
1936 |
|
1937 |
st.markdown("""
|
1938 |
<style>
|
|
|
1946 |
</style>
|
1947 |
""", unsafe_allow_html=True)
|
1948 |
|
1949 |
+
def save_report_forecast(forecasted_table_df,forecasted_table_df2):
|
1950 |
from io import BytesIO
|
|
|
|
|
|
|
1951 |
# Convert the DataFrame to an Excel file in memory
|
1952 |
excel_file = BytesIO()
|
1953 |
with pd.ExcelWriter(excel_file, engine='openpyxl') as writer:
|
1954 |
+
forecasted_table_df.to_excel(writer, index=True, sheet_name='Forecasted Spends')
|
1955 |
+
forecasted_table_df2.to_excel(writer, index=False, sheet_name='Monthly Breakdown')
|
1956 |
# Seek to the beginning of the BytesIO buffer
|
1957 |
excel_file.seek(0)
|
1958 |
return excel_file
|
|
|
|
|
|
|
|
|
|
|
1959 |
|
1960 |
st.subheader("Download Report")
|
1961 |
report_name = st.text_input(
|
|
|
1968 |
|
1969 |
st.download_button(
|
1970 |
"Download Report",
|
1971 |
+
data = save_report_forecast(forecasted_table_df,forecasted_table_df2),
|
1972 |
file_name = report_name+".xlsx",
|
1973 |
mime="application/vnd.ms-excel",
|
1974 |
# on_click=lambda: save_report_forecast(forecasted_table_df,report_name),
|
summary_df.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1822
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cdad2e46bd5810d3a714d9ef98b7644d6f5cdd61a62b160d3a1dd48b8bf9aec
|
3 |
size 1822
|