Simulator-UOPX / utilities_with_panel.py
Pragya Jatav
m1
ad7f3dc
from numerize.numerize import numerize
import streamlit as st
import pandas as pd
import json
from classes import Channel, Scenario
import numpy as np
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from classes import class_to_dict
from collections import OrderedDict
import io
import plotly
from pathlib import Path
import pickle
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
from streamlit.components.v1 import html
import smtplib
from scipy.optimize import curve_fit
from sklearn.metrics import r2_score
from classes import class_from_dict
import os
import base64
color_palette = ['#001f78', '#00b5db', '#f03d14', '#fa6e0a', '#ffbf45']
CURRENCY_INDICATOR = '€'
def load_authenticator():
with open('config.yaml') as file:
config = yaml.load(file, Loader=SafeLoader)
st.session_state['config'] = config
authenticator = stauth.Authenticate(
config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry_days'],
config['preauthorized']
)
st.session_state['authenticator'] = authenticator
return authenticator
def nav_page(page_name, timeout_secs=3):
nav_script = """
<script type="text/javascript">
function attempt_nav_page(page_name, start_time, timeout_secs) {
var links = window.parent.document.getElementsByTagName("a");
for (var i = 0; i < links.length; i++) {
if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) {
links[i].click();
return;
}
}
var elasped = new Date() - start_time;
if (elasped < timeout_secs * 1000) {
setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs);
} else {
alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s).");
}
}
window.addEventListener("load", function() {
attempt_nav_page("%s", new Date(), %d);
});
</script>
""" % (page_name, timeout_secs)
html(nav_script)
# def load_local_css(file_name):
# with open(file_name) as f:
# st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# def set_header():
# return st.markdown(f"""<div class='main-header'>
# <h1>MMM LiME</h1>
# <img src="https://assets-global.website-files.com/64c8fffb0e95cbc525815b79/64df84637f83a891c1473c51_Vector%20(Stroke).svg ">
# </div>""", unsafe_allow_html=True)
# path = os.path.dirname(__file__)
# file_ = open(f"{path}/mastercard_logo.png", "rb")
# contents = file_.read()
# data_url = base64.b64encode(contents).decode("utf-8")
# file_.close()
DATA_PATH = './data'
IMAGES_PATH = './data/images_224_224'
# New - S# # # print 2
if 'bin_dict' not in st.session_state:
with open("data_import.pkl", "rb") as f:
data = pickle.load(f)
st.session_state['bin_dict'] = data["bin_dict"]
# panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
panel_col="Panel"
is_panel = True if len(panel_col)>0 else False
date_col='Date'
#is_panel = False # flag if set to true - do panel level response curves
def load_local_css(file_name):
with open(file_name) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# def set_header():
# return st.markdown(f"""<div class='main-header'>
# <h1>H & M Recommendations</h1>
# <img src="data:image;base64,{data_url}", alt="Logo">
# </div>""", unsafe_allow_html=True)
path1 = os.path.dirname(__file__)
file_1 = open(f"ALDI_2017.png", "rb")
contents1 = file_1.read()
data_url1 = base64.b64encode(contents1).decode("utf-8")
file_1.close()
DATA_PATH1 = './data'
IMAGES_PATH1 = './data/images_224_224'
def set_header():
return st.markdown(f"""<div class='main-header'>
<!-- <h1></h1> -->
<div >
<img class='blend-logo' src="data:image;base64,{data_url1}", alt="Logo">
</div>""", unsafe_allow_html=True)
# def set_header():
# logo_path = "./path/to/your/local/LIME_logo.png" # Replace with the actual file path
# text = "LiME"
# return st.markdown(f"""<div class='main-header'>
# <img src="data:image/png;base64,{data_url}" alt="Logo" style="float: left; margin-right: 10px; width: 100px; height: auto;">
# <h1>{text}</h1>
# </div>""", unsafe_allow_html=True)
def s_curve(x,K,b,a,x0):
return K / (1 + b * np.exp(-a*(x-x0)))
def overview_test_data_prep_panel(X, df, spends_X, date_col, panel_col, target_col):
'''
function to create the data which is used in initialize data fn
X : X test with contributions
df : originally uploaded data (media data) which has raw vars
spends_X : spends of dates in X test
'''
# define channels
channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'],
'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions'], #, 'fb:_level_achieved_-_tier_1_clicks'],
'fb_level_achieved_tier_2': ['fb:_level_achieved_tier_2_impressions',
'fb_level_achieved_tier_2_clicks'],
'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'],
'ga_app': ['ga_app_impressions', 'ga_app_clicks'],
'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'],
'kwai': ['kwai_impressions', 'kwai_clicks'],
'programmatic': ['programmatic_impressions', 'programmatic_clicks'],
# 'affiliates':['affiliates_clicks'],
#
# "indicacao":['indicacao_clicks'],
#
# "infleux":['infleux_clicks'],
#
# "influencer":['influencer_clicks']
}
channel_list = list(channels.keys())
# map transformed variable to raw variable name & channel name
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
variables = {}
channel_and_variables = {}
new_variables = {}
new_channels_and_variables = {}
for transformed_var in [col for col in
X.drop(columns=[date_col, panel_col, target_col, 'pred', 'panel_effect']).columns if
"_contr" not in col]:
if len([col for col in df.columns if col in transformed_var]) == 1:
raw_var = [col for col in df.columns if col in transformed_var][0]
variables[transformed_var] = raw_var
channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][
0]
else:
new_variables[transformed_var] = transformed_var
new_channels_and_variables[transformed_var] = 'base'
# Raw DF
raw_X = pd.merge(X[[date_col, panel_col]], df[[date_col, panel_col] + list(variables.values())], how='left',
on=[date_col, panel_col])
assert len(raw_X) == len(X)
raw_X_cols = []
for i in raw_X.columns:
if i in channel_and_variables.keys():
raw_X_cols.append(channel_and_variables[i])
else:
raw_X_cols.append(i)
raw_X.columns = raw_X_cols
# Contribution DF
contr_X = X[[date_col, panel_col, 'panel_effect'] + [col for col in X.columns if
"_contr" in col and "sum_" not in col]].copy()
new_variables = [col for col in contr_X.columns if
"_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()]
if len(new_variables) > 0:
contr_X['const'] = contr_X[['panel_effect'] + new_variables].sum(axis=1)
contr_X.drop(columns=['panel_effect'], inplace=True)
contr_X.drop(columns=new_variables, inplace=True)
else:
contr_X.rename(columns={'panel_effect': 'const'}, inplace=True)
new_contr_X_cols = []
for col in contr_X.columns:
col_clean = col.replace("_contr", "")
new_contr_X_cols.append(col_clean)
contr_X.columns = new_contr_X_cols
contr_X_cols = []
for i in contr_X.columns:
if i in variables.keys():
contr_X_cols.append(channel_and_variables[variables[i]])
else:
contr_X_cols.append(i)
contr_X.columns = contr_X_cols
# Spends DF
spends_X.columns = [col.replace("_cost", "") for col in spends_X.columns]
raw_X.rename(columns={"date": "Date"}, inplace=True)
contr_X.rename(columns={"date": "Date"}, inplace=True)
spends_X.rename(columns={'date': 'Week'}, inplace=True)
# Create excel
file_name = "data_test_overview_panel_#" + target_col + ".xlsx"
with pd.ExcelWriter(file_name) as writer:
raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False)
contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False)
spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False)
def overview_test_data_prep_nonpanel(X, df, spends_X, date_col, target_col):
'''
function to create the data which is used in initialize data fn
X : X test with contributions
df : originally uploaded data (media data) which has raw vars
spends_X : spends of dates in X test
'''
# define channels
channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'],
'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions', 'fb_level_achieved_tier_1_clicks'],
'fb_level_achieved_tier_2': ['fb_level_achieved_tier_2_impressions',
'fb_level_achieved_tier_2_clicks'],
'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'],
'ga_app_will_and_cid_pequena_baixo_risco': ['ga_app_will_and_cid_pequena_baixo_risco_impressions', 'ga_app_will_and_cid_pequena_baixo_risco_clicks'],
'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'],
'kwai': ['kwai_impressions', 'kwai_clicks'],
'programmatic': ['programmatic_impressions', 'programmatic_clicks'],
'affiliates':['affiliates_clicks', 'affiliates_impressions'],
"indicacao":['indicacao_clicks', 'indicacao_impressions'],
"infleux":['infleux_clicks', 'infleux_impressions'],
"influencer":['influencer_clicks', 'influencer_impressions']
}
channel_list = list(channels.keys())
# map transformed variable to raw variable name & channel name
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
variables = {}
channel_and_variables = {}
new_variables = {}
new_channels_and_variables = {}
cols_to_del = list(set([date_col, target_col, 'pred']).intersection((set(X.columns))))
for transformed_var in [col for col in
X.drop(columns=cols_to_del).columns if
"_contr" not in col]: # also has 'const'
if len([col for col in df.columns if col in transformed_var]) == 1: # col is raw var
raw_var = [col for col in df.columns if col in transformed_var][0]
variables[transformed_var] = raw_var
channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][0]
else: # when no corresponding raw var then base
new_variables[transformed_var] = transformed_var
new_channels_and_variables[transformed_var] = 'base'
# Raw DF
raw_X = pd.merge(X[[date_col]], df[[date_col] + list(variables.values())], how='left',
on=[date_col])
assert len(raw_X) == len(X)
raw_X_cols = []
for i in raw_X.columns:
if i in channel_and_variables.keys():
raw_X_cols.append(channel_and_variables[i])
else:
raw_X_cols.append(i)
raw_X.columns = raw_X_cols
# Contribution DF
contr_X = X[[date_col] + [col for col in X.columns if "_contr" in col and "sum_" not in col]].copy()
# st.write(contr_X.columns)
new_variables = [col for col in contr_X.columns if
"_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()]
if len(new_variables) > 0: # if new vars are available, their contributions should be added to base (called const)
contr_X['const_contr'] = contr_X[['const_contr'] + new_variables].sum(axis=1)
contr_X.drop(columns=new_variables, inplace=True)
new_contr_X_cols = []
for col in contr_X.columns:
col_clean = col.replace("_contr", "")
new_contr_X_cols.append(col_clean)
contr_X.columns = new_contr_X_cols
contr_X_cols = []
for i in contr_X.columns:
if i in variables.keys():
contr_X_cols.append(channel_and_variables[variables[i]])
else:
contr_X_cols.append(i)
contr_X.columns = contr_X_cols
# Spends DF
spends_X.columns = [col.replace("_cost", "").replace("_spends", '').replace("_spend", "") for col in spends_X.columns]
raw_X.rename(columns={"date": "Date"}, inplace=True)
contr_X.rename(columns={"date": "Date"}, inplace=True)
spends_X.rename(columns={'date': 'Week'}, inplace=True)
# Create excel
file_name = "data_test_overview_panel_#" + target_col + ".xlsx"
with pd.ExcelWriter(file_name) as writer:
raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False)
contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False)
spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False)
def initialize_data(target_col,selected_markets):
# uopx_conv_rates = {'streaming_impressions' : 0.007,'digital_impressions' : 0.007,'search_clicks' : 0.00719,'tv_impressions' : 0.000173,
# "digital_clicks":0.005,"streaming_clicks":0.004,'streaming_spends':1,"tv_spends":1,"search_spends":1,
# "digital_spends":1}
## # # print('State initialized')
# excel = pd.read_excel("data_test_overview_panel.xlsx",sheet_name=None)
#excel = pd.read_excel("Overview_data_test_panel@#revenue.xlsx" + target_col + ".xlsx",sheet_name=None)
excel = pd.read_excel("Overview_data_test_panel@#prospects.xlsx",sheet_name=None)
raw_df = excel['RAW DATA MMM']
spend_df = excel['SPEND INPUT']
contri_df = excel['CONTRIBUTION MMM']
#st.write(raw_df)
if selected_markets!= "Total Market":
raw_df=raw_df[raw_df['Panel']==selected_markets]
spend_df=spend_df[spend_df['Panel']==selected_markets]
contri_df=contri_df[contri_df['Panel']==selected_markets]
else:
raw_df=raw_df.groupby('Date').sum().reset_index()
spend_df=spend_df.groupby('Week').sum().reset_index()
contri_df=contri_df.groupby('Date').sum().reset_index()
#Revenue_df = excel['Revenue']
## remove sesonalities, indices etc ...
exclude_columns = ['Date', 'Week','Panel',date_col, panel_col,'Others'
]
# Aggregate all 3 dfs to date level (from date-panel level)
raw_df[date_col]=pd.to_datetime(raw_df[date_col])
raw_df_aggregations = {c:'sum' for c in raw_df.columns if c not in exclude_columns}
raw_df = raw_df.groupby(date_col).agg(raw_df_aggregations).reset_index()
contri_df[date_col]=pd.to_datetime(contri_df[date_col])
contri_df_aggregations = {c:'sum' for c in contri_df.columns if c not in exclude_columns}
contri_df = contri_df.groupby(date_col).agg(contri_df_aggregations).reset_index()
input_df = raw_df.sort_values(by=[date_col])
output_df = contri_df.sort_values(by=[date_col])
spend_df['Week'] = pd.to_datetime(spend_df['Week'], format='%Y-%m-%d', errors='coerce')
spend_df_aggregations = {c: 'sum' for c in spend_df.columns if c not in exclude_columns}
spend_df = spend_df.groupby('Week').agg(spend_df_aggregations).reset_index()
# spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce')
# spend_df = spend_df.sort_values(by='Week')
channel_list = [col for col in input_df.columns if col not in exclude_columns]
response_curves = {}
mapes = {}
rmses = {}
upper_limits = {}
powers = {}
r2 = {}
conv_rates = {}
output_cols = []
channels = {}
sales = None
dates = input_df.Date.values
actual_output_dic = {}
actual_input_dic = {}
# ONLY FOR TESTING
# channel_list=['programmatic']
infeasible_channels = [c for c in contri_df.select_dtypes(include=['float', 'int']).columns if contri_df[c].sum()<=0]
# st.write(infeasible_channels)
channel_list=list(set(channel_list)-set(infeasible_channels))
for inp_col in channel_list:
#st.write(inp_col)
# # New - S# # # print 2
# if is_panel:
# input_df1 = input_df.groupby([date_col]).agg({inp_col:'sum'}).reset_index() # aggregate spends on date
# spends = input_df1[inp_col].values
# else :
# spends = input_df[inp_col].values
spends = spend_df[inp_col].values
x = spends.copy()
# upper limit for penalty
upper_limits[inp_col] = 2*x.max()
# contribution
# New - S# # # print 2
out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0]
if is_panel :
output_df1 = output_df.groupby([date_col]).agg({out_col:'sum'}).reset_index()
y = output_df1[out_col].values.copy()
else :
y = output_df[out_col].values.copy()
actual_output_dic[inp_col] = y.copy()
actual_input_dic[inp_col] = x.copy()
##output cols aggregation
output_cols.append(out_col)
## scale the input
power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)
if power >= 0 :
x = x / 10**power
x = x.astype('float64')
y = y.astype('float64')
## # # print('## # # printing yyyyyyyyy')
## # # print(inp_col)
## # # print(x.max())
## # # print(y.max())
# st.write(y.max(),x.max())
# # # print(y.max(),x.max())
if y.max()<=0.01:
if x.max()<=0.01 :
st.write("here-here")
bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))
else :
st.write("here")
bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))
else :
bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max()))
#bounds = ((y.max(), 3*y.max()),(0,1000),(0,1),(0,x.max()))
params,_ = curve_fit(s_curve,x,y,p0=(2*y.max(),0.01,1e-5,x.max()),
bounds=bounds,
maxfev=int(1e5))
mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean()
rmse = np.sqrt(((y - s_curve(x,*params))**2).mean())
r2_ = r2_score(y, s_curve(x,*params))
response_curves[inp_col] = {'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]}
mapes[inp_col] = mape
rmses[inp_col] = rmse
r2[inp_col] = r2_
powers[inp_col] = power
## conversion rates
spend_col = [_col for _col in spend_df.columns if _col.startswith(inp_col.rsplit('_',1)[0])][0]
## # # print('## # # printing spendssss')
## # # print(spend_col)
conv = (spend_df.set_index('Week')[spend_col] / input_df.set_index('Date')[inp_col].clip(lower=1)).reset_index()
conv.rename(columns={'index':'Week'},inplace=True)
conv['year'] = conv.Week.dt.year
conv_rates[inp_col] = list(conv.drop('Week',axis=1).mean().to_dict().values())[0]
### # # print('Before',conv_rates[inp_col])
# conv_rates[inp_col] = uopx_conv_rates[inp_col]
### # # print('After',(conv_rates[inp_col]))
channel = Channel(name=inp_col,dates=dates,
spends=spends,
# conversion_rate = np.mean(list(conv_rates[inp_col].values())),
conversion_rate = conv_rates[inp_col],
response_curve_type='s-curve',
response_curve_params={'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]},
bounds=np.array([-10,10]))
channels[inp_col] = channel
if sales is None:
sales = channel.actual_sales
else:
sales += channel.actual_sales
# st.write(inp_col, channel.actual_sales)
# st.write(output_cols)
other_contributions = output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only = True).values
correction = output_df.drop(['Date'],axis=1).sum(axis=1).values - (sales + other_contributions)
scenario_test_df=pd.DataFrame(columns=['other_contributions','correction', 'sales'])
scenario_test_df['other_contributions']=other_contributions
scenario_test_df['correction']=correction
scenario_test_df['sales']=sales
scenario_test_df.to_csv("test/scenario_test_df.csv",index=False)
output_df.to_csv("test/output_df.csv",index=False)
scenario = Scenario(name='default', channels=channels, constant=other_contributions, correction = correction)
## setting session variables
st.session_state['initialized'] = True
st.session_state['actual_df'] = input_df
st.session_state['raw_df'] = raw_df
st.session_state['contri_df'] = output_df
default_scenario_dict = class_to_dict(scenario)
st.session_state['default_scenario_dict'] = default_scenario_dict
st.session_state['scenario'] = scenario
st.session_state['channels_list'] = channel_list
st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
st.session_state['rcs'] = response_curves
st.session_state['powers'] = powers
st.session_state['actual_contribution_df'] = pd.DataFrame(actual_output_dic)
st.session_state['actual_input_df'] = pd.DataFrame(actual_input_dic)
for channel in channels.values():
st.session_state[channel.name] = numerize(channel.actual_total_spends * channel.conversion_rate,1)
st.session_state['xlsx_buffer'] = io.BytesIO()
if Path('../saved_scenarios.pkl').exists():
with open('../saved_scenarios.pkl','rb') as f:
st.session_state['saved_scenarios'] = pickle.load(f)
else:
st.session_state['saved_scenarios'] = OrderedDict()
st.session_state['total_spends_change'] = 0
st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
st.session_state['disable_download_button'] = True
# def initialize_data():
# # fetch data from excel
# output = pd.read_excel('data.xlsx',sheet_name=None)
# raw_df = output['RAW DATA MMM']
# contribution_df = output['CONTRIBUTION MMM']
# Revenue_df = output['Revenue']
# ## channels to be shows
# channel_list = []
# for col in raw_df.columns:
# if 'click' in col.lower() or 'spend' in col.lower() or 'imp' in col.lower():
# ### # # print(col)
# channel_list.append(col)
# else:
# pass
# ## NOTE : Considered only Desktop spends for all calculations
# acutal_df = raw_df[raw_df.Region == 'Desktop'].copy()
# ## NOTE : Considered one year of data
# acutal_df = acutal_df[acutal_df.Date>'2020-12-31']
# actual_df = acutal_df.drop('Region',axis=1).sort_values(by='Date')[[*channel_list,'Date']]
# ##load response curves
# with open('./grammarly_response_curves.json','r') as f:
# response_curves = json.load(f)
# ## create channel dict for scenario creation
# dates = actual_df.Date.values
# channels = {}
# rcs = {}
# constant = 0.
# for i,info_dict in enumerate(response_curves):
# name = info_dict.get('name')
# response_curve_type = info_dict.get('response_curve')
# response_curve_params = info_dict.get('params')
# rcs[name] = response_curve_params
# if name != 'constant':
# spends = actual_df[name].values
# channel = Channel(name=name,dates=dates,
# spends=spends,
# response_curve_type=response_curve_type,
# response_curve_params=response_curve_params,
# bounds=np.array([-30,30]))
# channels[name] = channel
# else:
# constant = info_dict.get('value',0.) * len(dates)
# ## create scenario
# scenario = Scenario(name='default', channels=channels, constant=constant)
# default_scenario_dict = class_to_dict(scenario)
# ## setting session variables
# st.session_state['initialized'] = True
# st.session_state['actual_df'] = actual_df
# st.session_state['raw_df'] = raw_df
# st.session_state['default_scenario_dict'] = default_scenario_dict
# st.session_state['scenario'] = scenario
# st.session_state['channels_list'] = channel_list
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
# st.session_state['rcs'] = rcs
# for channel in channels.values():
# if channel.name not in st.session_state:
# st.session_state[channel.name] = float(channel.actual_total_spends)
# if 'xlsx_buffer' not in st.session_state:
# st.session_state['xlsx_buffer'] = io.BytesIO()
# ## for saving scenarios
# if 'saved_scenarios' not in st.session_state:
# if Path('../saved_scenarios.pkl').exists():
# with open('../saved_scenarios.pkl','rb') as f:
# st.session_state['saved_scenarios'] = pickle.load(f)
# else:
# st.session_state['saved_scenarios'] = OrderedDict()
# if 'total_spends_change' not in st.session_state:
# st.session_state['total_spends_change'] = 0
# if 'optimization_channels' not in st.session_state:
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
# if 'disable_download_button' not in st.session_state:
# st.session_state['disable_download_button'] = True
def create_channel_summary(scenario):
summary_columns = []
actual_spends_rows = []
actual_sales_rows = []
actual_roi_rows = []
for channel in scenario.channels.values():
name_mod = channel.name.replace('_', ' ')
if name_mod.lower().endswith(' imp'):
name_mod = name_mod.replace('Imp', ' Impressions')
# # # print(name_mod, channel.actual_total_spends, channel.conversion_rate,
channel.actual_total_spends * channel.conversion_rate
summary_columns.append(name_mod)
actual_spends_rows.append(format_numbers(float(channel.actual_total_spends * channel.conversion_rate)))
actual_sales_rows.append(format_numbers((float(channel.actual_total_sales))))
actual_roi_rows.append(decimal_formater(
format_numbers((channel.actual_total_sales) / (channel.actual_total_spends * channel.conversion_rate),
include_indicator=False, n_decimals=4), n_decimals=4))
actual_summary_df = pd.DataFrame([summary_columns, actual_spends_rows, actual_sales_rows, actual_roi_rows]).T
actual_summary_df.columns = ['Channel', 'Spends', 'Prospects', 'ROI']
actual_summary_df['Prospects'] = actual_summary_df['Prospects'].map(lambda x: str(x)[1:])
return actual_summary_df
# def create_channel_summary(scenario):
#
# # Provided data
# data = {
# 'Channel': ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer'],
# 'Spends': ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'],
# 'Revenue': ['558.0K', '3.5M', '5.2M', '3.1M', '3.1M', '2.1M', '20.8M', '1.6M', '728.4K', '22.9M', '4.8M']
# }
#
# # Create DataFrame
# df = pd.DataFrame(data)
#
# # Convert currency strings to numeric values
# df['Spends'] = df['Spends'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
# df['Revenue'] = df['Revenue'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
#
# # Calculate ROI
# df['ROI'] = ((df['Revenue'] - df['Spends']) / df['Spends'])
#
# # Format columns
# format_currency = lambda x: f"${x:,.1f}"
# format_roi = lambda x: f"{x:.1f}"
#
# df['Spends'] = ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K']
# df['Revenue'] = ['$ 536.3K', '$ 3.4M', '$ 5M', '$ 3M', '$ 3M', '$ 2M', '$ 20M', '$ 1.5M', '$ 7.1M', '$ 22M', '$ 4.6M']
# df['ROI'] = df['ROI'].apply(format_roi)
#
# return df
#@st.cache_data()
def create_contribution_pie(scenario):
#c1f7dc
light_blue = 'rgba(0, 31, 120, 0.7)'
light_orange = 'rgba(0, 181, 219, 0.7)'
light_green = 'rgba(240, 61, 20, 0.7)'
light_red = 'rgba(250, 110, 10, 0.7)'
light_purple = 'rgba(255, 191, 69, 0.7)'
colors_map = {col:color for col,color in zip(st.session_state['channels_list'],plotly.colors.n_colors(plotly.colors.hex_to_rgb('#BE6468'), plotly.colors.hex_to_rgb('#E7B8B7'),23))}
total_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Media Spends','Prospects Contribution'],specs=[[{"type": "pie"}, {"type": "pie"}]])
total_contribution_fig.add_trace(
go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
values= [round(scenario.channels[channel_name].actual_total_spends * scenario.channels[channel_name].conversion_rate,1) for channel_name in st.session_state['channels_list']] + [0],
marker_colors=[light_blue, light_orange, light_green, light_red, light_purple],
hole=0.3),
row=1, col=1)
total_contribution_fig.add_trace(
go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
values= [scenario.channels[channel_name].actual_total_sales for channel_name in st.session_state['channels_list']] + [scenario.correction.sum() + scenario.constant.sum()],
hole=0.3),
row=1, col=2)
total_contribution_fig.update_traces(textposition='inside',texttemplate='%{percent:.1%}')
total_contribution_fig.update_layout(uniformtext_minsize=12,title='', uniformtext_mode='hide')
return total_contribution_fig
#@st.cache_data()
# def create_contribuion_stacked_plot(scenario):
# weekly_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "bar"}, {"type": "bar"}]])
# raw_df = st.session_state['raw_df']
# df = raw_df.sort_values(by='Date')
# x = df.Date
# weekly_spends_data = []
# weekly_sales_data = []
# for channel_name in st.session_state['channels_list']:
# weekly_spends_data.append((go.Bar(x=x,
# y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
# name=channel_name_formating(channel_name),
# hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
# legendgroup=channel_name)))
# weekly_sales_data.append((go.Bar(x=x,
# y=scenario.channels[channel_name].actual_sales,
# name=channel_name_formating(channel_name),
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
# legendgroup=channel_name, showlegend=False)))
# for _d in weekly_spends_data:
# weekly_contribution_fig.add_trace(_d, row=1, col=1)
# for _d in weekly_sales_data:
# weekly_contribution_fig.add_trace(_d, row=1, col=2)
# weekly_contribution_fig.add_trace(go.Bar(x=x,
# y=scenario.constant + scenario.correction,
# name='Non Media',
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), row=1, col=2)
# weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribuion by week', xaxis_title='Date')
# weekly_contribution_fig.update_xaxes(showgrid=False)
# weekly_contribution_fig.update_yaxes(showgrid=False)
# return weekly_contribution_fig
# @st.cache_data(allow_output_mutation=True)
# def create_channel_spends_sales_plot(channel):
# if channel is not None:
# x = channel.dates
# _spends = channel.actual_spends * channel.conversion_rate
# _sales = channel.actual_sales
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
# channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#005b96'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
# channel_sales_spends_fig.update_xaxes(showgrid=False)
# channel_sales_spends_fig.update_yaxes(showgrid=False)
# else:
# raw_df = st.session_state['raw_df']
# df = raw_df.sort_values(by='Date')
# x = df.Date
# scenario = class_from_dict(st.session_state['default_scenario_dict'])
# _sales = scenario.constant + scenario.correction
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
# # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#15C39A'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
# channel_sales_spends_fig.update_xaxes(showgrid=False)
# channel_sales_spends_fig.update_yaxes(showgrid=False)
# return channel_sales_spends_fig
# Define a shared color palette
# def create_contribution_pie():
# color_palette = ['#F3F3F0', '#5E7D7E', '#2FA1FF', '#00EDED', '#00EAE4', '#304550', '#EDEBEB', '#7FBEFD', '#003059', '#A2F3F3', '#E1D6E2', '#B6B6B6']
# total_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "pie"}, {"type": "pie"}]])
#
# channels_list = ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer', 'Non Media']
#
# # Assign colors from the limited palette to channels
# colors_map = {col: color_palette[i % len(color_palette)] for i, col in enumerate(channels_list)}
# colors_map['Non Media'] = color_palette[5] # Assign fixed green color for 'Non Media'
#
# # Hardcoded values for Spends and Revenue
# spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0]
# revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16]
#
# # Add trace for Spends pie chart
# total_contribution_fig.add_trace(
# go.Pie(
# labels=[channel_name for channel_name in channels_list],
# values=spends_values,
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
# hole=0.3
# ),
# row=1, col=1
# )
#
# # Add trace for Revenue pie chart
# total_contribution_fig.add_trace(
# go.Pie(
# labels=[channel_name for channel_name in channels_list],
# values=revenue_values,
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
# hole=0.3
# ),
# row=1, col=2
# )
#
# total_contribution_fig.update_traces(textposition='inside', texttemplate='%{percent:.1%}')
# total_contribution_fig.update_layout(uniformtext_minsize=12, title='Channel contribution', uniformtext_mode='hide')
# return total_contribution_fig
def create_contribuion_stacked_plot(scenario):
weekly_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Prospects'], specs=[[{"type": "bar"}, {"type": "bar"}]])
raw_df = st.session_state['raw_df']
df = raw_df.sort_values(by='Date')
x = df.Date
weekly_spends_data = []
weekly_sales_data = []
for i, channel_name in enumerate(st.session_state['channels_list']):
color = color_palette[i % len(color_palette)]
weekly_spends_data.append(go.Bar(
x=x,
y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
name=channel_name_formating(channel_name),
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
legendgroup=channel_name,
marker_color=color,
))
weekly_sales_data.append(go.Bar(
x=x,
y=scenario.channels[channel_name].actual_sales,
name=channel_name_formating(channel_name),
hovertemplate="Date:%{x}<br>Prospects:%{y:$.2s}",
legendgroup=channel_name,
showlegend=False,
marker_color=color,
))
for _d in weekly_spends_data:
weekly_contribution_fig.add_trace(_d, row=1, col=1)
for _d in weekly_sales_data:
weekly_contribution_fig.add_trace(_d, row=1, col=2)
weekly_contribution_fig.add_trace(go.Bar(
x=x,
y=scenario.constant + scenario.correction,
name='Non Media',
hovertemplate="Date:%{x}<br>Prospects:%{y:$.2s}",
marker_color=color_palette[-1],
), row=1, col=2)
weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribution by week', xaxis_title='Date')
weekly_contribution_fig.update_xaxes(showgrid=False)
weekly_contribution_fig.update_yaxes(showgrid=False)
return weekly_contribution_fig
def create_channel_spends_sales_plot(channel):
if channel is not None:
x = channel.dates
_spends = channel.actual_spends * channel.conversion_rate
_sales = channel.actual_sales
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
channel_sales_spends_fig.add_trace(go.Bar(
x=x,
y=_sales,
marker_color=color_palette[1], # You can choose a color from the palette
name='Prospects',
hovertemplate="Date:%{x}<br>Prospects:%{y:$.2s}",
), secondary_y=False)
channel_sales_spends_fig.add_trace(go.Scatter(
x=x,
y=_spends,
line=dict(color=color_palette[3]), # You can choose another color from the palette
name='Spends',
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
), secondary_y=True)
channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Prospects', yaxis2_title='Spends ($)', title='Channel spends and Prospects week-wise')
channel_sales_spends_fig.update_xaxes(showgrid=False)
channel_sales_spends_fig.update_yaxes(showgrid=False)
else:
raw_df = st.session_state['raw_df']
df = raw_df.sort_values(by='Date')
x = df.Date
scenario = class_from_dict(st.session_state['default_scenario_dict'])
_sales = scenario.constant + scenario.correction
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
channel_sales_spends_fig.add_trace(go.Bar(
x=x,
y=_sales,
marker_color=color_palette[0], # You can choose a color from the palette
name='Prospects',
hovertemplate="Date:%{x}<br>Prospects:%{y:$.2s}",
), secondary_y=False)
channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Prospects', yaxis2_title='Spends ($)', title='Channel spends and Prospects week-wise')
channel_sales_spends_fig.update_xaxes(showgrid=False)
channel_sales_spends_fig.update_yaxes(showgrid=False)
return channel_sales_spends_fig
def format_numbers(value, n_decimals=1,include_indicator = True):
if include_indicator:
return f'{CURRENCY_INDICATOR} {numerize(value,n_decimals)}'
else:
return f'{numerize(value,n_decimals)}'
def decimal_formater(num_string,n_decimals=1):
parts = num_string.split('.')
if len(parts) == 1:
return num_string+'.' + '0'*n_decimals
else:
to_be_padded = n_decimals - len(parts[-1])
if to_be_padded > 0 :
return num_string+'0'*to_be_padded
else:
return num_string
def channel_name_formating(channel_name):
name_mod = channel_name.replace('_', ' ')
if name_mod.lower().endswith(' imp'):
name_mod = name_mod.replace('Imp','Spend')
elif name_mod.lower().endswith(' clicks'):
name_mod = name_mod.replace('Clicks','Spend')
return name_mod
def send_email(email,message):
s = smtplib.SMTP('smtp.gmail.com', 587)
s.starttls()
s.login("[email protected]", "jgydhpfusuremcol")
s.sendmail("[email protected]", email, message)
s.quit()
if __name__ == "__main__":
initialize_data()