Spaces:
Sleeping
Sleeping
from numerize.numerize import numerize | |
import streamlit as st | |
import pandas as pd | |
import json | |
from classes import Channel, Scenario | |
import numpy as np | |
from plotly.subplots import make_subplots | |
import plotly.graph_objects as go | |
from classes import class_to_dict | |
from collections import OrderedDict | |
import io | |
import plotly | |
from pathlib import Path | |
import pickle | |
import streamlit_authenticator as stauth | |
import yaml | |
from yaml import SafeLoader | |
from streamlit.components.v1 import html | |
import smtplib | |
from scipy.optimize import curve_fit | |
from sklearn.metrics import r2_score | |
from classes import class_from_dict | |
import os | |
import base64 | |
color_palette = ['#001f78', '#00b5db', '#f03d14', '#fa6e0a', '#ffbf45'] | |
CURRENCY_INDICATOR = '€' | |
def load_authenticator(): | |
with open('config.yaml') as file: | |
config = yaml.load(file, Loader=SafeLoader) | |
st.session_state['config'] = config | |
authenticator = stauth.Authenticate( | |
config['credentials'], | |
config['cookie']['name'], | |
config['cookie']['key'], | |
config['cookie']['expiry_days'], | |
config['preauthorized'] | |
) | |
st.session_state['authenticator'] = authenticator | |
return authenticator | |
def nav_page(page_name, timeout_secs=3): | |
nav_script = """ | |
<script type="text/javascript"> | |
function attempt_nav_page(page_name, start_time, timeout_secs) { | |
var links = window.parent.document.getElementsByTagName("a"); | |
for (var i = 0; i < links.length; i++) { | |
if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) { | |
links[i].click(); | |
return; | |
} | |
} | |
var elasped = new Date() - start_time; | |
if (elasped < timeout_secs * 1000) { | |
setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs); | |
} else { | |
alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s)."); | |
} | |
} | |
window.addEventListener("load", function() { | |
attempt_nav_page("%s", new Date(), %d); | |
}); | |
</script> | |
""" % (page_name, timeout_secs) | |
html(nav_script) | |
# def load_local_css(file_name): | |
# with open(file_name) as f: | |
# st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) | |
# def set_header(): | |
# return st.markdown(f"""<div class='main-header'> | |
# <h1>MMM LiME</h1> | |
# <img src="https://assets-global.website-files.com/64c8fffb0e95cbc525815b79/64df84637f83a891c1473c51_Vector%20(Stroke).svg "> | |
# </div>""", unsafe_allow_html=True) | |
# path = os.path.dirname(__file__) | |
# file_ = open(f"{path}/mastercard_logo.png", "rb") | |
# contents = file_.read() | |
# data_url = base64.b64encode(contents).decode("utf-8") | |
# file_.close() | |
DATA_PATH = './data' | |
IMAGES_PATH = './data/images_224_224' | |
# New - S# # # print 2 | |
if 'bin_dict' not in st.session_state: | |
with open("data_import.pkl", "rb") as f: | |
data = pickle.load(f) | |
st.session_state['bin_dict'] = data["bin_dict"] | |
# panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column | |
panel_col="Panel" | |
is_panel = True if len(panel_col)>0 else False | |
date_col='Date' | |
#is_panel = False # flag if set to true - do panel level response curves | |
def load_local_css(file_name): | |
with open(file_name) as f: | |
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) | |
# def set_header(): | |
# return st.markdown(f"""<div class='main-header'> | |
# <h1>H & M Recommendations</h1> | |
# <img src="data:image;base64,{data_url}", alt="Logo"> | |
# </div>""", unsafe_allow_html=True) | |
path1 = os.path.dirname(__file__) | |
file_1 = open(f"ALDI_2017.png", "rb") | |
contents1 = file_1.read() | |
data_url1 = base64.b64encode(contents1).decode("utf-8") | |
file_1.close() | |
DATA_PATH1 = './data' | |
IMAGES_PATH1 = './data/images_224_224' | |
def set_header(): | |
return st.markdown(f"""<div class='main-header'> | |
<!-- <h1></h1> --> | |
<div > | |
<img class='blend-logo' src="data:image;base64,{data_url1}", alt="Logo"> | |
</div>""", unsafe_allow_html=True) | |
# def set_header(): | |
# logo_path = "./path/to/your/local/LIME_logo.png" # Replace with the actual file path | |
# text = "LiME" | |
# return st.markdown(f"""<div class='main-header'> | |
# <img src="data:image/png;base64,{data_url}" alt="Logo" style="float: left; margin-right: 10px; width: 100px; height: auto;"> | |
# <h1>{text}</h1> | |
# </div>""", unsafe_allow_html=True) | |
def s_curve(x,K,b,a,x0): | |
return K / (1 + b * np.exp(-a*(x-x0))) | |
def overview_test_data_prep_panel(X, df, spends_X, date_col, panel_col, target_col): | |
''' | |
function to create the data which is used in initialize data fn | |
X : X test with contributions | |
df : originally uploaded data (media data) which has raw vars | |
spends_X : spends of dates in X test | |
''' | |
# define channels | |
channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'], | |
'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions'], #, 'fb:_level_achieved_-_tier_1_clicks'], | |
'fb_level_achieved_tier_2': ['fb:_level_achieved_tier_2_impressions', | |
'fb_level_achieved_tier_2_clicks'], | |
'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'], | |
'ga_app': ['ga_app_impressions', 'ga_app_clicks'], | |
'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'], | |
'kwai': ['kwai_impressions', 'kwai_clicks'], | |
'programmatic': ['programmatic_impressions', 'programmatic_clicks'], | |
# 'affiliates':['affiliates_clicks'], | |
# | |
# "indicacao":['indicacao_clicks'], | |
# | |
# "infleux":['infleux_clicks'], | |
# | |
# "influencer":['influencer_clicks'] | |
} | |
channel_list = list(channels.keys()) | |
# map transformed variable to raw variable name & channel name | |
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel) | |
variables = {} | |
channel_and_variables = {} | |
new_variables = {} | |
new_channels_and_variables = {} | |
for transformed_var in [col for col in | |
X.drop(columns=[date_col, panel_col, target_col, 'pred', 'panel_effect']).columns if | |
"_contr" not in col]: | |
if len([col for col in df.columns if col in transformed_var]) == 1: | |
raw_var = [col for col in df.columns if col in transformed_var][0] | |
variables[transformed_var] = raw_var | |
channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][ | |
0] | |
else: | |
new_variables[transformed_var] = transformed_var | |
new_channels_and_variables[transformed_var] = 'base' | |
# Raw DF | |
raw_X = pd.merge(X[[date_col, panel_col]], df[[date_col, panel_col] + list(variables.values())], how='left', | |
on=[date_col, panel_col]) | |
assert len(raw_X) == len(X) | |
raw_X_cols = [] | |
for i in raw_X.columns: | |
if i in channel_and_variables.keys(): | |
raw_X_cols.append(channel_and_variables[i]) | |
else: | |
raw_X_cols.append(i) | |
raw_X.columns = raw_X_cols | |
# Contribution DF | |
contr_X = X[[date_col, panel_col, 'panel_effect'] + [col for col in X.columns if | |
"_contr" in col and "sum_" not in col]].copy() | |
new_variables = [col for col in contr_X.columns if | |
"_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()] | |
if len(new_variables) > 0: | |
contr_X['const'] = contr_X[['panel_effect'] + new_variables].sum(axis=1) | |
contr_X.drop(columns=['panel_effect'], inplace=True) | |
contr_X.drop(columns=new_variables, inplace=True) | |
else: | |
contr_X.rename(columns={'panel_effect': 'const'}, inplace=True) | |
new_contr_X_cols = [] | |
for col in contr_X.columns: | |
col_clean = col.replace("_contr", "") | |
new_contr_X_cols.append(col_clean) | |
contr_X.columns = new_contr_X_cols | |
contr_X_cols = [] | |
for i in contr_X.columns: | |
if i in variables.keys(): | |
contr_X_cols.append(channel_and_variables[variables[i]]) | |
else: | |
contr_X_cols.append(i) | |
contr_X.columns = contr_X_cols | |
# Spends DF | |
spends_X.columns = [col.replace("_cost", "") for col in spends_X.columns] | |
raw_X.rename(columns={"date": "Date"}, inplace=True) | |
contr_X.rename(columns={"date": "Date"}, inplace=True) | |
spends_X.rename(columns={'date': 'Week'}, inplace=True) | |
# Create excel | |
file_name = "data_test_overview_panel_#" + target_col + ".xlsx" | |
with pd.ExcelWriter(file_name) as writer: | |
raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False) | |
contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False) | |
spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False) | |
def overview_test_data_prep_nonpanel(X, df, spends_X, date_col, target_col): | |
''' | |
function to create the data which is used in initialize data fn | |
X : X test with contributions | |
df : originally uploaded data (media data) which has raw vars | |
spends_X : spends of dates in X test | |
''' | |
# define channels | |
channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'], | |
'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions', 'fb_level_achieved_tier_1_clicks'], | |
'fb_level_achieved_tier_2': ['fb_level_achieved_tier_2_impressions', | |
'fb_level_achieved_tier_2_clicks'], | |
'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'], | |
'ga_app_will_and_cid_pequena_baixo_risco': ['ga_app_will_and_cid_pequena_baixo_risco_impressions', 'ga_app_will_and_cid_pequena_baixo_risco_clicks'], | |
'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'], | |
'kwai': ['kwai_impressions', 'kwai_clicks'], | |
'programmatic': ['programmatic_impressions', 'programmatic_clicks'], | |
'affiliates':['affiliates_clicks', 'affiliates_impressions'], | |
"indicacao":['indicacao_clicks', 'indicacao_impressions'], | |
"infleux":['infleux_clicks', 'infleux_impressions'], | |
"influencer":['influencer_clicks', 'influencer_impressions'] | |
} | |
channel_list = list(channels.keys()) | |
# map transformed variable to raw variable name & channel name | |
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel) | |
variables = {} | |
channel_and_variables = {} | |
new_variables = {} | |
new_channels_and_variables = {} | |
cols_to_del = list(set([date_col, target_col, 'pred']).intersection((set(X.columns)))) | |
for transformed_var in [col for col in | |
X.drop(columns=cols_to_del).columns if | |
"_contr" not in col]: # also has 'const' | |
if len([col for col in df.columns if col in transformed_var]) == 1: # col is raw var | |
raw_var = [col for col in df.columns if col in transformed_var][0] | |
variables[transformed_var] = raw_var | |
channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][0] | |
else: # when no corresponding raw var then base | |
new_variables[transformed_var] = transformed_var | |
new_channels_and_variables[transformed_var] = 'base' | |
# Raw DF | |
raw_X = pd.merge(X[[date_col]], df[[date_col] + list(variables.values())], how='left', | |
on=[date_col]) | |
assert len(raw_X) == len(X) | |
raw_X_cols = [] | |
for i in raw_X.columns: | |
if i in channel_and_variables.keys(): | |
raw_X_cols.append(channel_and_variables[i]) | |
else: | |
raw_X_cols.append(i) | |
raw_X.columns = raw_X_cols | |
# Contribution DF | |
contr_X = X[[date_col] + [col for col in X.columns if "_contr" in col and "sum_" not in col]].copy() | |
# st.write(contr_X.columns) | |
new_variables = [col for col in contr_X.columns if | |
"_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()] | |
if len(new_variables) > 0: # if new vars are available, their contributions should be added to base (called const) | |
contr_X['const_contr'] = contr_X[['const_contr'] + new_variables].sum(axis=1) | |
contr_X.drop(columns=new_variables, inplace=True) | |
new_contr_X_cols = [] | |
for col in contr_X.columns: | |
col_clean = col.replace("_contr", "") | |
new_contr_X_cols.append(col_clean) | |
contr_X.columns = new_contr_X_cols | |
contr_X_cols = [] | |
for i in contr_X.columns: | |
if i in variables.keys(): | |
contr_X_cols.append(channel_and_variables[variables[i]]) | |
else: | |
contr_X_cols.append(i) | |
contr_X.columns = contr_X_cols | |
# Spends DF | |
spends_X.columns = [col.replace("_cost", "").replace("_spends", '').replace("_spend", "") for col in spends_X.columns] | |
raw_X.rename(columns={"date": "Date"}, inplace=True) | |
contr_X.rename(columns={"date": "Date"}, inplace=True) | |
spends_X.rename(columns={'date': 'Week'}, inplace=True) | |
# Create excel | |
file_name = "data_test_overview_panel_#" + target_col + ".xlsx" | |
with pd.ExcelWriter(file_name) as writer: | |
raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False) | |
contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False) | |
spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False) | |
def initialize_data(target_col,selected_markets): | |
# uopx_conv_rates = {'streaming_impressions' : 0.007,'digital_impressions' : 0.007,'search_clicks' : 0.00719,'tv_impressions' : 0.000173, | |
# "digital_clicks":0.005,"streaming_clicks":0.004,'streaming_spends':1,"tv_spends":1,"search_spends":1, | |
# "digital_spends":1} | |
## # # print('State initialized') | |
# excel = pd.read_excel("data_test_overview_panel.xlsx",sheet_name=None) | |
#excel = pd.read_excel("Overview_data_test_panel@#revenue.xlsx" + target_col + ".xlsx",sheet_name=None) | |
excel = pd.read_excel("Overview_data_test_panel@#prospects.xlsx",sheet_name=None) | |
raw_df = excel['RAW DATA MMM'] | |
spend_df = excel['SPEND INPUT'] | |
contri_df = excel['CONTRIBUTION MMM'] | |
#st.write(raw_df) | |
if selected_markets!= "Total Market": | |
raw_df=raw_df[raw_df['Panel']==selected_markets] | |
spend_df=spend_df[spend_df['Panel']==selected_markets] | |
contri_df=contri_df[contri_df['Panel']==selected_markets] | |
else: | |
raw_df=raw_df.groupby('Date').sum().reset_index() | |
spend_df=spend_df.groupby('Week').sum().reset_index() | |
contri_df=contri_df.groupby('Date').sum().reset_index() | |
#Revenue_df = excel['Revenue'] | |
## remove sesonalities, indices etc ... | |
exclude_columns = ['Date', 'Week','Panel',date_col, panel_col,'Others' | |
] | |
# Aggregate all 3 dfs to date level (from date-panel level) | |
raw_df[date_col]=pd.to_datetime(raw_df[date_col]) | |
raw_df_aggregations = {c:'sum' for c in raw_df.columns if c not in exclude_columns} | |
raw_df = raw_df.groupby(date_col).agg(raw_df_aggregations).reset_index() | |
contri_df[date_col]=pd.to_datetime(contri_df[date_col]) | |
contri_df_aggregations = {c:'sum' for c in contri_df.columns if c not in exclude_columns} | |
contri_df = contri_df.groupby(date_col).agg(contri_df_aggregations).reset_index() | |
input_df = raw_df.sort_values(by=[date_col]) | |
output_df = contri_df.sort_values(by=[date_col]) | |
spend_df['Week'] = pd.to_datetime(spend_df['Week'], format='%Y-%m-%d', errors='coerce') | |
spend_df_aggregations = {c: 'sum' for c in spend_df.columns if c not in exclude_columns} | |
spend_df = spend_df.groupby('Week').agg(spend_df_aggregations).reset_index() | |
# spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce') | |
# spend_df = spend_df.sort_values(by='Week') | |
channel_list = [col for col in input_df.columns if col not in exclude_columns] | |
response_curves = {} | |
mapes = {} | |
rmses = {} | |
upper_limits = {} | |
powers = {} | |
r2 = {} | |
conv_rates = {} | |
output_cols = [] | |
channels = {} | |
sales = None | |
dates = input_df.Date.values | |
actual_output_dic = {} | |
actual_input_dic = {} | |
# ONLY FOR TESTING | |
# channel_list=['programmatic'] | |
infeasible_channels = [c for c in contri_df.select_dtypes(include=['float', 'int']).columns if contri_df[c].sum()<=0] | |
# st.write(infeasible_channels) | |
channel_list=list(set(channel_list)-set(infeasible_channels)) | |
for inp_col in channel_list: | |
#st.write(inp_col) | |
# # New - S# # # print 2 | |
# if is_panel: | |
# input_df1 = input_df.groupby([date_col]).agg({inp_col:'sum'}).reset_index() # aggregate spends on date | |
# spends = input_df1[inp_col].values | |
# else : | |
# spends = input_df[inp_col].values | |
spends = spend_df[inp_col].values | |
x = spends.copy() | |
# upper limit for penalty | |
upper_limits[inp_col] = 2*x.max() | |
# contribution | |
# New - S# # # print 2 | |
out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0] | |
if is_panel : | |
output_df1 = output_df.groupby([date_col]).agg({out_col:'sum'}).reset_index() | |
y = output_df1[out_col].values.copy() | |
else : | |
y = output_df[out_col].values.copy() | |
actual_output_dic[inp_col] = y.copy() | |
actual_input_dic[inp_col] = x.copy() | |
##output cols aggregation | |
output_cols.append(out_col) | |
## scale the input | |
power = (np.ceil(np.log(x.max()) / np.log(10) )- 3) | |
if power >= 0 : | |
x = x / 10**power | |
x = x.astype('float64') | |
y = y.astype('float64') | |
## # # print('## # # printing yyyyyyyyy') | |
## # # print(inp_col) | |
## # # print(x.max()) | |
## # # print(y.max()) | |
# st.write(y.max(),x.max()) | |
# # # print(y.max(),x.max()) | |
if y.max()<=0.01: | |
if x.max()<=0.01 : | |
st.write("here-here") | |
bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01)) | |
else : | |
st.write("here") | |
bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01)) | |
else : | |
bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max())) | |
#bounds = ((y.max(), 3*y.max()),(0,1000),(0,1),(0,x.max())) | |
params,_ = curve_fit(s_curve,x,y,p0=(2*y.max(),0.01,1e-5,x.max()), | |
bounds=bounds, | |
maxfev=int(1e5)) | |
mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean() | |
rmse = np.sqrt(((y - s_curve(x,*params))**2).mean()) | |
r2_ = r2_score(y, s_curve(x,*params)) | |
response_curves[inp_col] = {'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]} | |
mapes[inp_col] = mape | |
rmses[inp_col] = rmse | |
r2[inp_col] = r2_ | |
powers[inp_col] = power | |
## conversion rates | |
spend_col = [_col for _col in spend_df.columns if _col.startswith(inp_col.rsplit('_',1)[0])][0] | |
## # # print('## # # printing spendssss') | |
## # # print(spend_col) | |
conv = (spend_df.set_index('Week')[spend_col] / input_df.set_index('Date')[inp_col].clip(lower=1)).reset_index() | |
conv.rename(columns={'index':'Week'},inplace=True) | |
conv['year'] = conv.Week.dt.year | |
conv_rates[inp_col] = list(conv.drop('Week',axis=1).mean().to_dict().values())[0] | |
### # # print('Before',conv_rates[inp_col]) | |
# conv_rates[inp_col] = uopx_conv_rates[inp_col] | |
### # # print('After',(conv_rates[inp_col])) | |
channel = Channel(name=inp_col,dates=dates, | |
spends=spends, | |
# conversion_rate = np.mean(list(conv_rates[inp_col].values())), | |
conversion_rate = conv_rates[inp_col], | |
response_curve_type='s-curve', | |
response_curve_params={'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]}, | |
bounds=np.array([-10,10])) | |
channels[inp_col] = channel | |
if sales is None: | |
sales = channel.actual_sales | |
else: | |
sales += channel.actual_sales | |
# st.write(inp_col, channel.actual_sales) | |
# st.write(output_cols) | |
other_contributions = output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only = True).values | |
correction = output_df.drop(['Date'],axis=1).sum(axis=1).values - (sales + other_contributions) | |
scenario_test_df=pd.DataFrame(columns=['other_contributions','correction', 'sales']) | |
scenario_test_df['other_contributions']=other_contributions | |
scenario_test_df['correction']=correction | |
scenario_test_df['sales']=sales | |
scenario_test_df.to_csv("test/scenario_test_df.csv",index=False) | |
output_df.to_csv("test/output_df.csv",index=False) | |
scenario = Scenario(name='default', channels=channels, constant=other_contributions, correction = correction) | |
## setting session variables | |
st.session_state['initialized'] = True | |
st.session_state['actual_df'] = input_df | |
st.session_state['raw_df'] = raw_df | |
st.session_state['contri_df'] = output_df | |
default_scenario_dict = class_to_dict(scenario) | |
st.session_state['default_scenario_dict'] = default_scenario_dict | |
st.session_state['scenario'] = scenario | |
st.session_state['channels_list'] = channel_list | |
st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list} | |
st.session_state['rcs'] = response_curves | |
st.session_state['powers'] = powers | |
st.session_state['actual_contribution_df'] = pd.DataFrame(actual_output_dic) | |
st.session_state['actual_input_df'] = pd.DataFrame(actual_input_dic) | |
for channel in channels.values(): | |
st.session_state[channel.name] = numerize(channel.actual_total_spends * channel.conversion_rate,1) | |
st.session_state['xlsx_buffer'] = io.BytesIO() | |
if Path('../saved_scenarios.pkl').exists(): | |
with open('../saved_scenarios.pkl','rb') as f: | |
st.session_state['saved_scenarios'] = pickle.load(f) | |
else: | |
st.session_state['saved_scenarios'] = OrderedDict() | |
st.session_state['total_spends_change'] = 0 | |
st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list} | |
st.session_state['disable_download_button'] = True | |
# def initialize_data(): | |
# # fetch data from excel | |
# output = pd.read_excel('data.xlsx',sheet_name=None) | |
# raw_df = output['RAW DATA MMM'] | |
# contribution_df = output['CONTRIBUTION MMM'] | |
# Revenue_df = output['Revenue'] | |
# ## channels to be shows | |
# channel_list = [] | |
# for col in raw_df.columns: | |
# if 'click' in col.lower() or 'spend' in col.lower() or 'imp' in col.lower(): | |
# ### # # print(col) | |
# channel_list.append(col) | |
# else: | |
# pass | |
# ## NOTE : Considered only Desktop spends for all calculations | |
# acutal_df = raw_df[raw_df.Region == 'Desktop'].copy() | |
# ## NOTE : Considered one year of data | |
# acutal_df = acutal_df[acutal_df.Date>'2020-12-31'] | |
# actual_df = acutal_df.drop('Region',axis=1).sort_values(by='Date')[[*channel_list,'Date']] | |
# ##load response curves | |
# with open('./grammarly_response_curves.json','r') as f: | |
# response_curves = json.load(f) | |
# ## create channel dict for scenario creation | |
# dates = actual_df.Date.values | |
# channels = {} | |
# rcs = {} | |
# constant = 0. | |
# for i,info_dict in enumerate(response_curves): | |
# name = info_dict.get('name') | |
# response_curve_type = info_dict.get('response_curve') | |
# response_curve_params = info_dict.get('params') | |
# rcs[name] = response_curve_params | |
# if name != 'constant': | |
# spends = actual_df[name].values | |
# channel = Channel(name=name,dates=dates, | |
# spends=spends, | |
# response_curve_type=response_curve_type, | |
# response_curve_params=response_curve_params, | |
# bounds=np.array([-30,30])) | |
# channels[name] = channel | |
# else: | |
# constant = info_dict.get('value',0.) * len(dates) | |
# ## create scenario | |
# scenario = Scenario(name='default', channels=channels, constant=constant) | |
# default_scenario_dict = class_to_dict(scenario) | |
# ## setting session variables | |
# st.session_state['initialized'] = True | |
# st.session_state['actual_df'] = actual_df | |
# st.session_state['raw_df'] = raw_df | |
# st.session_state['default_scenario_dict'] = default_scenario_dict | |
# st.session_state['scenario'] = scenario | |
# st.session_state['channels_list'] = channel_list | |
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list} | |
# st.session_state['rcs'] = rcs | |
# for channel in channels.values(): | |
# if channel.name not in st.session_state: | |
# st.session_state[channel.name] = float(channel.actual_total_spends) | |
# if 'xlsx_buffer' not in st.session_state: | |
# st.session_state['xlsx_buffer'] = io.BytesIO() | |
# ## for saving scenarios | |
# if 'saved_scenarios' not in st.session_state: | |
# if Path('../saved_scenarios.pkl').exists(): | |
# with open('../saved_scenarios.pkl','rb') as f: | |
# st.session_state['saved_scenarios'] = pickle.load(f) | |
# else: | |
# st.session_state['saved_scenarios'] = OrderedDict() | |
# if 'total_spends_change' not in st.session_state: | |
# st.session_state['total_spends_change'] = 0 | |
# if 'optimization_channels' not in st.session_state: | |
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list} | |
# if 'disable_download_button' not in st.session_state: | |
# st.session_state['disable_download_button'] = True | |
def create_channel_summary(scenario): | |
summary_columns = [] | |
actual_spends_rows = [] | |
actual_sales_rows = [] | |
actual_roi_rows = [] | |
for channel in scenario.channels.values(): | |
name_mod = channel.name.replace('_', ' ') | |
if name_mod.lower().endswith(' imp'): | |
name_mod = name_mod.replace('Imp', ' Impressions') | |
# # # print(name_mod, channel.actual_total_spends, channel.conversion_rate, | |
channel.actual_total_spends * channel.conversion_rate | |
summary_columns.append(name_mod) | |
actual_spends_rows.append(format_numbers(float(channel.actual_total_spends * channel.conversion_rate))) | |
actual_sales_rows.append(format_numbers((float(channel.actual_total_sales)))) | |
actual_roi_rows.append(decimal_formater( | |
format_numbers((channel.actual_total_sales) / (channel.actual_total_spends * channel.conversion_rate), | |
include_indicator=False, n_decimals=4), n_decimals=4)) | |
actual_summary_df = pd.DataFrame([summary_columns, actual_spends_rows, actual_sales_rows, actual_roi_rows]).T | |
actual_summary_df.columns = ['Channel', 'Spends', 'Prospects', 'ROI'] | |
actual_summary_df['Prospects'] = actual_summary_df['Prospects'].map(lambda x: str(x)[1:]) | |
return actual_summary_df | |
# def create_channel_summary(scenario): | |
# | |
# # Provided data | |
# data = { | |
# 'Channel': ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer'], | |
# 'Spends': ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'], | |
# 'Revenue': ['558.0K', '3.5M', '5.2M', '3.1M', '3.1M', '2.1M', '20.8M', '1.6M', '728.4K', '22.9M', '4.8M'] | |
# } | |
# | |
# # Create DataFrame | |
# df = pd.DataFrame(data) | |
# | |
# # Convert currency strings to numeric values | |
# df['Spends'] = df['Spends'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int) | |
# df['Revenue'] = df['Revenue'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int) | |
# | |
# # Calculate ROI | |
# df['ROI'] = ((df['Revenue'] - df['Spends']) / df['Spends']) | |
# | |
# # Format columns | |
# format_currency = lambda x: f"${x:,.1f}" | |
# format_roi = lambda x: f"{x:.1f}" | |
# | |
# df['Spends'] = ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'] | |
# df['Revenue'] = ['$ 536.3K', '$ 3.4M', '$ 5M', '$ 3M', '$ 3M', '$ 2M', '$ 20M', '$ 1.5M', '$ 7.1M', '$ 22M', '$ 4.6M'] | |
# df['ROI'] = df['ROI'].apply(format_roi) | |
# | |
# return df | |
#@st.cache_data() | |
def create_contribution_pie(scenario): | |
#c1f7dc | |
light_blue = 'rgba(0, 31, 120, 0.7)' | |
light_orange = 'rgba(0, 181, 219, 0.7)' | |
light_green = 'rgba(240, 61, 20, 0.7)' | |
light_red = 'rgba(250, 110, 10, 0.7)' | |
light_purple = 'rgba(255, 191, 69, 0.7)' | |
colors_map = {col:color for col,color in zip(st.session_state['channels_list'],plotly.colors.n_colors(plotly.colors.hex_to_rgb('#BE6468'), plotly.colors.hex_to_rgb('#E7B8B7'),23))} | |
total_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Media Spends','Prospects Contribution'],specs=[[{"type": "pie"}, {"type": "pie"}]]) | |
total_contribution_fig.add_trace( | |
go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'], | |
values= [round(scenario.channels[channel_name].actual_total_spends * scenario.channels[channel_name].conversion_rate,1) for channel_name in st.session_state['channels_list']] + [0], | |
marker_colors=[light_blue, light_orange, light_green, light_red, light_purple], | |
hole=0.3), | |
row=1, col=1) | |
total_contribution_fig.add_trace( | |
go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'], | |
values= [scenario.channels[channel_name].actual_total_sales for channel_name in st.session_state['channels_list']] + [scenario.correction.sum() + scenario.constant.sum()], | |
hole=0.3), | |
row=1, col=2) | |
total_contribution_fig.update_traces(textposition='inside',texttemplate='%{percent:.1%}') | |
total_contribution_fig.update_layout(uniformtext_minsize=12,title='', uniformtext_mode='hide') | |
return total_contribution_fig | |
#@st.cache_data() | |
# def create_contribuion_stacked_plot(scenario): | |
# weekly_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "bar"}, {"type": "bar"}]]) | |
# raw_df = st.session_state['raw_df'] | |
# df = raw_df.sort_values(by='Date') | |
# x = df.Date | |
# weekly_spends_data = [] | |
# weekly_sales_data = [] | |
# for channel_name in st.session_state['channels_list']: | |
# weekly_spends_data.append((go.Bar(x=x, | |
# y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate, | |
# name=channel_name_formating(channel_name), | |
# hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}", | |
# legendgroup=channel_name))) | |
# weekly_sales_data.append((go.Bar(x=x, | |
# y=scenario.channels[channel_name].actual_sales, | |
# name=channel_name_formating(channel_name), | |
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}", | |
# legendgroup=channel_name, showlegend=False))) | |
# for _d in weekly_spends_data: | |
# weekly_contribution_fig.add_trace(_d, row=1, col=1) | |
# for _d in weekly_sales_data: | |
# weekly_contribution_fig.add_trace(_d, row=1, col=2) | |
# weekly_contribution_fig.add_trace(go.Bar(x=x, | |
# y=scenario.constant + scenario.correction, | |
# name='Non Media', | |
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), row=1, col=2) | |
# weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribuion by week', xaxis_title='Date') | |
# weekly_contribution_fig.update_xaxes(showgrid=False) | |
# weekly_contribution_fig.update_yaxes(showgrid=False) | |
# return weekly_contribution_fig | |
# @st.cache_data(allow_output_mutation=True) | |
# def create_channel_spends_sales_plot(channel): | |
# if channel is not None: | |
# x = channel.dates | |
# _spends = channel.actual_spends * channel.conversion_rate | |
# _sales = channel.actual_sales | |
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False) | |
# channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#005b96'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True) | |
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise') | |
# channel_sales_spends_fig.update_xaxes(showgrid=False) | |
# channel_sales_spends_fig.update_yaxes(showgrid=False) | |
# else: | |
# raw_df = st.session_state['raw_df'] | |
# df = raw_df.sort_values(by='Date') | |
# x = df.Date | |
# scenario = class_from_dict(st.session_state['default_scenario_dict']) | |
# _sales = scenario.constant + scenario.correction | |
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False) | |
# # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#15C39A'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True) | |
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise') | |
# channel_sales_spends_fig.update_xaxes(showgrid=False) | |
# channel_sales_spends_fig.update_yaxes(showgrid=False) | |
# return channel_sales_spends_fig | |
# Define a shared color palette | |
# def create_contribution_pie(): | |
# color_palette = ['#F3F3F0', '#5E7D7E', '#2FA1FF', '#00EDED', '#00EAE4', '#304550', '#EDEBEB', '#7FBEFD', '#003059', '#A2F3F3', '#E1D6E2', '#B6B6B6'] | |
# total_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "pie"}, {"type": "pie"}]]) | |
# | |
# channels_list = ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer', 'Non Media'] | |
# | |
# # Assign colors from the limited palette to channels | |
# colors_map = {col: color_palette[i % len(color_palette)] for i, col in enumerate(channels_list)} | |
# colors_map['Non Media'] = color_palette[5] # Assign fixed green color for 'Non Media' | |
# | |
# # Hardcoded values for Spends and Revenue | |
# spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0] | |
# revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16] | |
# | |
# # Add trace for Spends pie chart | |
# total_contribution_fig.add_trace( | |
# go.Pie( | |
# labels=[channel_name for channel_name in channels_list], | |
# values=spends_values, | |
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]), | |
# hole=0.3 | |
# ), | |
# row=1, col=1 | |
# ) | |
# | |
# # Add trace for Revenue pie chart | |
# total_contribution_fig.add_trace( | |
# go.Pie( | |
# labels=[channel_name for channel_name in channels_list], | |
# values=revenue_values, | |
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]), | |
# hole=0.3 | |
# ), | |
# row=1, col=2 | |
# ) | |
# | |
# total_contribution_fig.update_traces(textposition='inside', texttemplate='%{percent:.1%}') | |
# total_contribution_fig.update_layout(uniformtext_minsize=12, title='Channel contribution', uniformtext_mode='hide') | |
# return total_contribution_fig | |
def create_contribuion_stacked_plot(scenario): | |
weekly_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Prospects'], specs=[[{"type": "bar"}, {"type": "bar"}]]) | |
raw_df = st.session_state['raw_df'] | |
df = raw_df.sort_values(by='Date') | |
x = df.Date | |
weekly_spends_data = [] | |
weekly_sales_data = [] | |
for i, channel_name in enumerate(st.session_state['channels_list']): | |
color = color_palette[i % len(color_palette)] | |
weekly_spends_data.append(go.Bar( | |
x=x, | |
y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate, | |
name=channel_name_formating(channel_name), | |
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}", | |
legendgroup=channel_name, | |
marker_color=color, | |
)) | |
weekly_sales_data.append(go.Bar( | |
x=x, | |
y=scenario.channels[channel_name].actual_sales, | |
name=channel_name_formating(channel_name), | |
hovertemplate="Date:%{x}<br>Prospects:%{y:$.2s}", | |
legendgroup=channel_name, | |
showlegend=False, | |
marker_color=color, | |
)) | |
for _d in weekly_spends_data: | |
weekly_contribution_fig.add_trace(_d, row=1, col=1) | |
for _d in weekly_sales_data: | |
weekly_contribution_fig.add_trace(_d, row=1, col=2) | |
weekly_contribution_fig.add_trace(go.Bar( | |
x=x, | |
y=scenario.constant + scenario.correction, | |
name='Non Media', | |
hovertemplate="Date:%{x}<br>Prospects:%{y:$.2s}", | |
marker_color=color_palette[-1], | |
), row=1, col=2) | |
weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribution by week', xaxis_title='Date') | |
weekly_contribution_fig.update_xaxes(showgrid=False) | |
weekly_contribution_fig.update_yaxes(showgrid=False) | |
return weekly_contribution_fig | |
def create_channel_spends_sales_plot(channel): | |
if channel is not None: | |
x = channel.dates | |
_spends = channel.actual_spends * channel.conversion_rate | |
_sales = channel.actual_sales | |
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
channel_sales_spends_fig.add_trace(go.Bar( | |
x=x, | |
y=_sales, | |
marker_color=color_palette[1], # You can choose a color from the palette | |
name='Prospects', | |
hovertemplate="Date:%{x}<br>Prospects:%{y:$.2s}", | |
), secondary_y=False) | |
channel_sales_spends_fig.add_trace(go.Scatter( | |
x=x, | |
y=_spends, | |
line=dict(color=color_palette[3]), # You can choose another color from the palette | |
name='Spends', | |
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}", | |
), secondary_y=True) | |
channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Prospects', yaxis2_title='Spends ($)', title='Channel spends and Prospects week-wise') | |
channel_sales_spends_fig.update_xaxes(showgrid=False) | |
channel_sales_spends_fig.update_yaxes(showgrid=False) | |
else: | |
raw_df = st.session_state['raw_df'] | |
df = raw_df.sort_values(by='Date') | |
x = df.Date | |
scenario = class_from_dict(st.session_state['default_scenario_dict']) | |
_sales = scenario.constant + scenario.correction | |
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
channel_sales_spends_fig.add_trace(go.Bar( | |
x=x, | |
y=_sales, | |
marker_color=color_palette[0], # You can choose a color from the palette | |
name='Prospects', | |
hovertemplate="Date:%{x}<br>Prospects:%{y:$.2s}", | |
), secondary_y=False) | |
channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Prospects', yaxis2_title='Spends ($)', title='Channel spends and Prospects week-wise') | |
channel_sales_spends_fig.update_xaxes(showgrid=False) | |
channel_sales_spends_fig.update_yaxes(showgrid=False) | |
return channel_sales_spends_fig | |
def format_numbers(value, n_decimals=1,include_indicator = True): | |
if include_indicator: | |
return f'{CURRENCY_INDICATOR} {numerize(value,n_decimals)}' | |
else: | |
return f'{numerize(value,n_decimals)}' | |
def decimal_formater(num_string,n_decimals=1): | |
parts = num_string.split('.') | |
if len(parts) == 1: | |
return num_string+'.' + '0'*n_decimals | |
else: | |
to_be_padded = n_decimals - len(parts[-1]) | |
if to_be_padded > 0 : | |
return num_string+'0'*to_be_padded | |
else: | |
return num_string | |
def channel_name_formating(channel_name): | |
name_mod = channel_name.replace('_', ' ') | |
if name_mod.lower().endswith(' imp'): | |
name_mod = name_mod.replace('Imp','Spend') | |
elif name_mod.lower().endswith(' clicks'): | |
name_mod = name_mod.replace('Clicks','Spend') | |
return name_mod | |
def send_email(email,message): | |
s = smtplib.SMTP('smtp.gmail.com', 587) | |
s.starttls() | |
s.login("[email protected]", "jgydhpfusuremcol") | |
s.sendmail("[email protected]", email, message) | |
s.quit() | |
if __name__ == "__main__": | |
initialize_data() | |