Simulator-UOPX / Transformation_functions.py
BlendMMM's picture
Upload 51 files
be4456f verified
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from Eda_functions import format_numbers,line_plot,summary
import numpy as np
import re
def sanitize_key(key, prefix=""):
# Use regular expressions to remove non-alphanumeric characters and spaces
key = re.sub(r'[^a-zA-Z0-9]', '', key)
return f"{prefix}{key}"
def check_box(options, ad_stock_value,lag_value,num_columns=4, prefix=""):
num_rows = -(-len(options) // num_columns) # Ceiling division to calculate rows
selected_options = []
adstock_info = {} # Store adstock and lag info for each selected option
if ad_stock_value!=0:
for row in range(num_rows):
cols = st.columns(num_columns)
for col in cols:
if options:
option = options.pop(0)
key = sanitize_key(f"{option}_{row}", prefix=prefix)
selected = col.checkbox(option, key=key)
if selected:
selected_options.append(option)
# Input minimum and maximum adstock values
adstock = col.slider('Select Adstock Range', 0.0, 1.0, ad_stock_value, step=0.05, format="%.2f",key= f"adstock_{key}" )
# Input minimum and maximum lag values
lag = col.slider('Select Lag Range', 0, 7, lag_value, step=1,key=f"lag_{key}" )
# Create a dictionary to store adstock and lag info for the option
option_info = {
'adstock': adstock,
'lag': lag}
# Append the dictionary to the adstock_info list
adstock_info[option]=option_info
else:adstock_info[option]={
'adstock': ad_stock_value,
'lag': lag_value}
return selected_options, adstock_info
else:
for row in range(num_rows):
cols = st.columns(num_columns)
for col in cols:
if options:
option = options.pop(0)
key = sanitize_key(f"{option}_{row}", prefix=prefix)
selected = col.checkbox(option, key=key)
if selected:
selected_options.append(option)
# Input minimum and maximum lag values
lag = col.slider('Select Lag Range', 0, 7, lag_value, step=1,key=f"lag_{key}" )
# dictionary to store adstock and lag info for the option
option_info = {
'lag': lag}
# Append the dictionary to the adstock_info list
adstock_info[option]=option_info
else:adstock_info[option]={
'lag': lag_value}
return selected_options, adstock_info
def apply_lag(X, features,lag_dict):
#lag_data=pd.DataFrame()
for col in features:
for lag in range(lag_dict[col]['lag'][0], lag_dict[col]['lag'][1] + 1):
if lag>0:
X[f'{col}_lag{lag}'] = X[col].shift(periods=lag, fill_value=0)
return X
def apply_adstock(X, variable_name, decay):
values = X[variable_name].values
adstock = np.zeros(len(values))
for row in range(len(values)):
if row == 0:
adstock[row] = values[row]
else:
adstock[row] = values[row] + adstock[row - 1] * decay
return adstock
def top_correlated_features(df,target,media_data):
corr_df=df.drop(target,axis=1)
#corr_df[target]=df[target]
#st.dataframe(corr_df)
for i in media_data:
#st.write(media_data[2])
#st.dataframe(corr_df.filter(like=media_data[2]))
d=(pd.concat([corr_df.filter(like=i),df[target]],axis=1)).corr()[target]
d=d.sort_values(ascending=False)
d=d.drop(target,axis=0)
corr=pd.DataFrame({'Feature_name':d.index,"Correlation":d.values})
corr.columns = pd.MultiIndex.from_product([[i], ['Feature_name', 'Correlation']])
return corr
def top_correlated_features(df,variables,target):
correlation_df=pd.DataFrame()
for col in variables:
d=pd.concat([df.filter(like=col),df[target]],axis=1).corr()[target]
#st.dataframe(d)
d=d.sort_values(ascending=False).iloc[1:]
corr_df=pd.DataFrame({'Media_channel':d.index,'Correlation':d.values})
corr_df.columns=pd.MultiIndex.from_tuples([(col, 'Variable'), (col, 'Correlation')])
correlation_df=pd.concat([corr_df,correlation_df],axis=1)
return correlation_df
def top_correlated_feature(df,variable,target):
d=pd.concat([df.filter(like=variable),df[target]],axis=1).corr()[target]
# st.dataframe(d)
d=d.sort_values(ascending=False).iloc[1:]
# st.dataframe(d)
corr_df=pd.DataFrame({'Media_channel':d.index,'Correlation':d.values})
corr_df['Adstock']=corr_df['Media_channel'].map(lambda x:x.split('_adst')[1] if len(x.split('_adst'))>1 else '-')
corr_df['Lag']=corr_df['Media_channel'].map(lambda x:x.split('_lag')[1][0] if len(x.split('_lag'))>1 else '-' )
corr_df.drop(['Correlation'],axis=1,inplace=True)
corr_df['Correlation']=np.round(d.values,2)
sorted_corr_df= corr_df.loc[corr_df['Correlation'].abs().sort_values(ascending=False).index]
#corr_df.columns=pd.MultiIndex.from_tuples([(variable, 'Variable'), (variable, 'Correlation')])
#correlation_df=pd.concat([corr_df,correlation_df],axis=1)
return sorted_corr_df