Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy.optimize import curve_fit | |
from sklearn.preprocessing import MinMaxScaler | |
import warnings | |
warnings.filterwarnings("ignore") | |
import plotly.graph_objects as go | |
from utilities import (channel_name_formating) | |
## reading input data | |
df= pd.read_csv('response_curves_input_file.csv') | |
df.dropna(inplace=True) | |
df['Date'] = pd.to_datetime(df['Date']) | |
df.reset_index(inplace=True) | |
channel_cols = [ | |
'BroadcastTV', | |
'CableTV', | |
'Connected&OTTTV', | |
'DisplayProspecting', | |
'DisplayRetargeting', | |
'Video', | |
'SocialProspecting', | |
'SocialRetargeting', | |
'SearchBrand', | |
'SearchNon-brand', | |
'DigitalPartners', | |
'Audio', | |
'Email'] | |
spend_cols = [ | |
'tv_broadcast_spend', | |
'tv_cable_spend', | |
'stream_video_spend', | |
'disp_prospect_spend', | |
'disp_retarget_spend', | |
'olv_spend', | |
'social_prospect_spend', | |
'social_retarget_spend', | |
'search_brand_spend', | |
'search_nonbrand_spend', | |
'cm_spend', | |
'audio_spend', | |
'email_spend'] | |
prospect_cols = [ | |
'Broadcast TV_Prospects', | |
'Cable TV_Prospects', | |
'Connected & OTT TV_Prospects', | |
'Display Prospecting_Prospects', | |
'Display Retargeting_Prospects', | |
'Video_Prospects', | |
'Social Prospecting_Prospects', | |
'Social Retargeting_Prospects', | |
'Search Brand_Prospects', | |
'Search Non-brand_Prospects', | |
'Digital Partners_Prospects', | |
'Audio_Prospects', | |
'Email_Prospects'] | |
def hill_equation(x, Kd, n): | |
return x**n / (Kd**n + x**n) | |
def hill_func(x_data,y_data,x_minmax,y_minmax): | |
# Fit the Hill equation to the data | |
initial_guess = [1, 1] # Initial guess for Kd and n | |
params, covariance = curve_fit(hill_equation, x_data, y_data, p0=initial_guess,maxfev = 1000) | |
# Extract the fitted parameters | |
Kd_fit, n_fit = params | |
# Generate y values using the fitted parameters | |
y_fit = hill_equation(x_data, Kd_fit, n_fit) | |
x_data_inv = x_minmax.inverse_transform(np.array(x_data).reshape(-1,1)) | |
y_data_inv = y_minmax.inverse_transform(np.array(y_data).reshape(-1,1)) | |
y_fit_inv = y_minmax.inverse_transform(np.array(y_fit).reshape(-1,1)) | |
# # Plot the original data and the fitted curve | |
# plt.scatter(x_data_inv, y_data_inv, label='Actual Data') | |
# plt.scatter(x_data_inv, y_fit_inv, label='Fit Data',color='red') | |
# # plt.line(x_data_inv, y_fit_inv, label=f'Fitted Hill Equation (Kd={Kd_fit:.2f}, n={n_fit:.2f})', color='red') | |
# plt.xlabel('Ligand Concentration') | |
# plt.ylabel('Fraction of Binding') | |
# plt.title('Fitting Hill Equation to Data') | |
# plt.legend() | |
# plt.show() | |
return y_fit,y_fit_inv,Kd_fit, n_fit | |
def data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext): | |
fit_col = 'Fit_Data_'+channel | |
plot_df = pd.DataFrame() | |
plot_df[f'{channel}_Spends'] = X | |
plot_df['Date'] = df['Date'] | |
plot_df['MAT'] = df['MAT'] | |
y_fit_inv_v2 = [] | |
for i in range(len(y_fit_inv)): | |
y_fit_inv_v2.append(y_fit_inv[i][0]) | |
plot_df[fit_col] = y_fit_inv_v2 | |
# adding extra data | |
y_fit_inv_v2_ext = [] | |
for i in range(len(y_fit_inv_ext)): | |
y_fit_inv_v2_ext.append(y_fit_inv_ext[i][0]) | |
# # print(x_ext_data) | |
ext_df = pd.DataFrame() | |
ext_df[f'{channel}_Spends'] = x_ext_data | |
ext_df[fit_col] = y_fit_inv_v2_ext | |
ext_df['Date'] = [ | |
np.datetime64('1950-01-01'), | |
np.datetime64('1950-06-15'), | |
np.datetime64('1950-12-31') | |
] | |
ext_df['MAT'] = ["ext","ext","ext"] | |
# # print(ext_df) | |
plot_df= plot_df.append(ext_df) | |
return plot_df | |
def input_data(df,spend_col,prospect_col): | |
X = np.array(df[spend_col].tolist()) | |
y = np.array(df[prospect_col].tolist()) | |
x_minmax = MinMaxScaler() | |
x_scaled = x_minmax.fit_transform(df[[spend_col]]) | |
x_data = [] | |
for i in range(len(x_scaled)): | |
x_data.append(x_scaled[i][0]) | |
y_minmax = MinMaxScaler() | |
y_scaled = y_minmax.fit_transform(df[[prospect_col]]) | |
y_data = [] | |
for i in range(len(y_scaled)): | |
y_data.append(y_scaled[i][0]) | |
return X,y,x_data,y_data,x_minmax,y_minmax | |
def extend_s_curve(x_max,x_minmax,y_minmax, Kd_fit, n_fit): | |
# # print(x_max) | |
x_ext_data = [x_max*1.2,x_max*1.3,x_max*1.5] | |
# x_ext_data = [1500000,2000000,2500000] | |
# x_ext_data = [x_max+100,x_max+200,x_max+5000] | |
x_scaled = x_minmax.transform(pd.DataFrame(x_ext_data)) | |
x_data = [] | |
for i in range(len(x_scaled)): | |
x_data.append(x_scaled[i][0]) | |
# # print(x_data) | |
y_fit = hill_equation(x_data, Kd_fit, n_fit) | |
y_fit_inv = y_minmax.inverse_transform(np.array(y_fit).reshape(-1,1)) | |
return x_ext_data,y_fit_inv | |
def fit_data(spend_col,prospect_col,channel): | |
### getting k and n parameters | |
temp_df = df[df[spend_col]>0] | |
temp_df.reset_index(inplace=True) | |
X,y,x_data,y_data,x_minmax,y_minmax = input_data(temp_df,spend_col,prospect_col) | |
y_fit, y_fit_inv, Kd_fit, n_fit = hill_func(x_data,y_data,x_minmax,y_minmax) | |
# # print('k: ',Kd_fit) | |
# # print('n: ', n_fit) | |
##### extend_s_curve | |
x_ext_data,y_fit_inv_ext= extend_s_curve(temp_df[spend_col].max(),x_minmax,y_minmax, Kd_fit, n_fit) | |
plot_df = data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext) | |
return plot_df | |
plotly_data = fit_data(spend_cols[0],prospect_cols[0],channel_cols[0]) | |
plotly_data.tail() | |
for i in range(1,13): | |
# # print(i) | |
pdf = fit_data(spend_cols[i],prospect_cols[i],channel_cols[i]) | |
plotly_data = plotly_data.merge(pdf,on = ["Date","MAT"],how = "left") | |
def response_curves(channel,x_modified,y_modified): | |
# Initialize the Plotly figure | |
fig = go.Figure() | |
x_col = (channel+"_Spends").replace('\xa0', '') | |
y_col = ("Fit_Data_"+channel).replace('\xa0', '') | |
# fig.add_trace(go.Scatter( | |
# x=plotly_data[x_col], | |
# y=plotly_data[y_col], | |
# mode='markers', | |
# name=x_col.replace('_Spends', '') | |
# )) | |
fig.add_trace(go.Scatter( | |
x=plotly_data.sort_values(by=x_col, ascending=True)[x_col], | |
y=plotly_data.sort_values(by=x_col, ascending=True)[y_col], | |
mode='lines+markers', | |
name=x_col.replace('_Spends', '') | |
)) | |
plotly_data2 = plotly_data.copy() | |
plotly_data2 = plotly_data[plotly_data[x_col].isnull()==False] | |
print(plotly_data[plotly_data2['Date'] == plotly_data2['Date'].max()][x_col]) | |
# .dropna(subset=[x_col]).reset_index(inplace = True) | |
fig.add_trace(go.Scatter( | |
x=plotly_data[plotly_data2['Date'] == plotly_data2['Date'].max()][x_col], | |
y=plotly_data[plotly_data2['Date'] == plotly_data2['Date'].max()][y_col], | |
mode='markers', | |
marker=dict( | |
size=13 # Adjust the size value to make the markers larger or smaller | |
, color = 'yellow' | |
), | |
name="Current Spends" | |
)) | |
fig.add_trace(go.Scatter( | |
x=[x_modified/104], | |
y=[y_modified/104], | |
mode='markers', | |
marker=dict( | |
size=13 # Adjust the size value to make the markers larger or smaller | |
, color = 'blue' | |
), | |
name="Optimised Spends" | |
)) | |
# Update layout with titles | |
fig.update_layout( | |
title=channel+' Response Curve', | |
xaxis_title='Weekly Spends', | |
yaxis_title='Prospects' | |
) | |
# Show the figure | |
return fig | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy.optimize import curve_fit | |
from sklearn.preprocessing import MinMaxScaler | |
import warnings | |
warnings.filterwarnings("ignore") | |
import plotly.graph_objects as go | |
## reading input data | |
df= pd.read_csv('response_curves_input_file.csv') | |
df.dropna(inplace=True) | |
df['Date'] = pd.to_datetime(df['Date']) | |
df.reset_index(inplace=True) | |
channel_cols = [ | |
'BroadcastTV', | |
'CableTV', | |
'Connected&OTTTV', | |
'DisplayProspecting', | |
'DisplayRetargeting', | |
'Video', | |
'SocialProspecting', | |
'SocialRetargeting', | |
'SearchBrand', | |
'SearchNon-brand', | |
'DigitalPartners', | |
'Audio', | |
'Email'] | |
spend_cols = [ | |
'tv_broadcast_spend', | |
'tv_cable_spend', | |
'stream_video_spend', | |
'disp_prospect_spend', | |
'disp_retarget_spend', | |
'olv_spend', | |
'social_prospect_spend', | |
'social_retarget_spend', | |
'search_brand_spend', | |
'search_nonbrand_spend', | |
'cm_spend', | |
'audio_spend', | |
'email_spend'] | |
prospect_cols = [ | |
'Broadcast TV_Prospects', | |
'Cable TV_Prospects', | |
'Connected & OTT TV_Prospects', | |
'Display Prospecting_Prospects', | |
'Display Retargeting_Prospects', | |
'Video_Prospects', | |
'Social Prospecting_Prospects', | |
'Social Retargeting_Prospects', | |
'Search Brand_Prospects', | |
'Search Non-brand_Prospects', | |
'Digital Partners_Prospects', | |
'Audio_Prospects', | |
'Email_Prospects'] | |
def hill_equation(x, Kd, n): | |
return x**n / (Kd**n + x**n) | |
def hill_func(x_data,y_data,x_minmax,y_minmax): | |
# Fit the Hill equation to the data | |
initial_guess = [1, 1] # Initial guess for Kd and n | |
params, covariance = curve_fit(hill_equation, x_data, y_data, p0=initial_guess,maxfev = 1000) | |
# Extract the fitted parameters | |
Kd_fit, n_fit = params | |
# Generate y values using the fitted parameters | |
y_fit = hill_equation(x_data, Kd_fit, n_fit) | |
x_data_inv = x_minmax.inverse_transform(np.array(x_data).reshape(-1,1)) | |
y_data_inv = y_minmax.inverse_transform(np.array(y_data).reshape(-1,1)) | |
y_fit_inv = y_minmax.inverse_transform(np.array(y_fit).reshape(-1,1)) | |
# # Plot the original data and the fitted curve | |
# plt.scatter(x_data_inv, y_data_inv, label='Actual Data') | |
# plt.scatter(x_data_inv, y_fit_inv, label='Fit Data',color='red') | |
# # plt.line(x_data_inv, y_fit_inv, label=f'Fitted Hill Equation (Kd={Kd_fit:.2f}, n={n_fit:.2f})', color='red') | |
# plt.xlabel('Ligand Concentration') | |
# plt.ylabel('Fraction of Binding') | |
# plt.title('Fitting Hill Equation to Data') | |
# plt.legend() | |
# plt.show() | |
return y_fit,y_fit_inv,Kd_fit, n_fit | |
def data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext): | |
fit_col = 'Fit_Data_'+channel | |
plot_df = pd.DataFrame() | |
plot_df[f'{channel}_Spends'] = X | |
plot_df['Date'] = df['Date'] | |
plot_df['MAT'] = df['MAT'] | |
y_fit_inv_v2 = [] | |
for i in range(len(y_fit_inv)): | |
y_fit_inv_v2.append(y_fit_inv[i][0]) | |
plot_df[fit_col] = y_fit_inv_v2 | |
# adding extra data | |
y_fit_inv_v2_ext = [] | |
for i in range(len(y_fit_inv_ext)): | |
y_fit_inv_v2_ext.append(y_fit_inv_ext[i][0]) | |
# # print(x_ext_data) | |
ext_df = pd.DataFrame() | |
ext_df[f'{channel}_Spends'] = x_ext_data | |
ext_df[fit_col] = y_fit_inv_v2_ext | |
ext_df['Date'] = [ | |
np.datetime64('1950-01-01'), | |
np.datetime64('1950-06-15'), | |
np.datetime64('1950-12-31') | |
] | |
ext_df['MAT'] = ["ext","ext","ext"] | |
# # print(ext_df) | |
plot_df= plot_df.append(ext_df) | |
return plot_df | |
def input_data(df,spend_col,prospect_col): | |
X = np.array(df[spend_col].tolist()) | |
y = np.array(df[prospect_col].tolist()) | |
x_minmax = MinMaxScaler() | |
x_scaled = x_minmax.fit_transform(df[[spend_col]]) | |
x_data = [] | |
for i in range(len(x_scaled)): | |
x_data.append(x_scaled[i][0]) | |
y_minmax = MinMaxScaler() | |
y_scaled = y_minmax.fit_transform(df[[prospect_col]]) | |
y_data = [] | |
for i in range(len(y_scaled)): | |
y_data.append(y_scaled[i][0]) | |
return X,y,x_data,y_data,x_minmax,y_minmax | |
def extend_s_curve(x_max,x_minmax,y_minmax, Kd_fit, n_fit): | |
# # print(x_max) | |
x_ext_data = [x_max*1.2,x_max*1.3,x_max*1.5] | |
# x_ext_data = [1500000,2000000,2500000] | |
# x_ext_data = [x_max+100,x_max+200,x_max+5000] | |
x_scaled = x_minmax.transform(pd.DataFrame(x_ext_data)) | |
x_data = [] | |
for i in range(len(x_scaled)): | |
x_data.append(x_scaled[i][0]) | |
# # print(x_data) | |
y_fit = hill_equation(x_data, Kd_fit, n_fit) | |
y_fit_inv = y_minmax.inverse_transform(np.array(y_fit).reshape(-1,1)) | |
return x_ext_data,y_fit_inv | |
def fit_data(spend_col,prospect_col,channel): | |
### getting k and n parameters | |
temp_df = df[df[spend_col]>0] | |
temp_df.reset_index(inplace=True) | |
X,y,x_data,y_data,x_minmax,y_minmax = input_data(temp_df,spend_col,prospect_col) | |
y_fit, y_fit_inv, Kd_fit, n_fit = hill_func(x_data,y_data,x_minmax,y_minmax) | |
# # print('k: ',Kd_fit) | |
# # print('n: ', n_fit) | |
##### extend_s_curve | |
x_ext_data,y_fit_inv_ext= extend_s_curve(temp_df[spend_col].max(),x_minmax,y_minmax, Kd_fit, n_fit) | |
plot_df = data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext) | |
return plot_df | |
plotly_data = fit_data(spend_cols[0],prospect_cols[0],channel_cols[0]) | |
plotly_data.tail() | |
for i in range(1,13): | |
# # print(i) | |
pdf = fit_data(spend_cols[i],prospect_cols[i],channel_cols[i]) | |
plotly_data = plotly_data.merge(pdf,on = ["Date","MAT"],how = "left") | |
def response_curves(channel,x_modified,y_modified): | |
# Initialize the Plotly figure | |
fig = go.Figure() | |
x_col = (channel+"_Spends").replace('\xa0', '') | |
y_col = ("Fit_Data_"+channel).replace('\xa0', '') | |
# fig.add_trace(go.Scatter( | |
# x=plotly_data[x_col], | |
# y=plotly_data[y_col], | |
# mode='markers', | |
# name=x_col.replace('_Spends', '') | |
# )) | |
fig.add_trace(go.Scatter( | |
x=plotly_data.sort_values(by=x_col, ascending=True)[x_col], | |
y=plotly_data.sort_values(by=x_col, ascending=True)[y_col], | |
mode='lines', | |
marker=dict(color = 'blue'), | |
name=x_col.replace('_Spends', '') | |
)) | |
plotly_data2 = plotly_data.copy() | |
plotly_data2 = plotly_data[plotly_data[x_col].isnull()==False] | |
# .dropna(subset=[x_col]).reset_index(inplace = True) | |
fig.add_trace(go.Scatter( | |
x=plotly_data2[plotly_data2['Date'] == plotly_data2['Date'].max()][x_col], | |
y=plotly_data2[plotly_data2['Date'] == plotly_data2['Date'].max()][y_col], | |
mode='markers', | |
marker=dict( | |
size=13 # Adjust the size value to make the markers larger or smaller | |
, color = '#516DA6' | |
), | |
name="Current Spends" | |
)) | |
fig.add_trace(go.Scatter( | |
x=[x_modified], | |
y=[y_modified], | |
mode='markers', | |
marker=dict( | |
size=13 # Adjust the size value to make the markers larger or smaller | |
, color = '#4ACAD9' | |
), | |
name="Optimised Spends" | |
)) | |
# Update layout with titles | |
fig.update_layout( | |
title=channel_name_formating(channel)+' Response Curve', | |
xaxis_title='Weekly Spends', | |
yaxis_title='Prospects' | |
) | |
# Show the figure | |
return fig | |