Simulator-UOPX / Model_Result_Overview.py
Pragya Jatav
m1
f7bb281
raw
history blame
12.7 kB
import streamlit as st
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import pickle
import Streamlit_functions as sf
from utilities import load_authenticator
from utilities_with_panel import (set_header,
overview_test_data_prep_panel,
overview_test_data_prep_nonpanel,
initialize_data,
load_local_css,
create_channel_summary,
create_contribution_pie,
create_contribuion_stacked_plot,
create_channel_spends_sales_plot,
format_numbers,
channel_name_formating)
import plotly.graph_objects as go
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
import time
from datetime import datetime
st.set_page_config(layout='wide')
load_local_css('styles.css')
set_header()
st.title("Model Result Overview")
def get_random_effects(media_data, panel_col, mdf):
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
for i, market in enumerate(media_data[panel_col].unique()):
# print(i, end='\r')
intercept = mdf.random_effects[market].values[0]
random_eff_df.loc[i, 'random_effect'] = intercept
random_eff_df.loc[i, panel_col] = market
return random_eff_df
def process_train_and_test(train, test, features, panel_col, target_col):
X1 = train[features]
ss = MinMaxScaler()
X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
X1[panel_col] = train[panel_col]
X1[target_col] = train[target_col]
if test is not None:
X2 = test[features]
X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
X2[panel_col] = test[panel_col]
X2[target_col] = test[target_col]
return X1, X2
return X1
def mdf_predict(X_df, mdf, random_eff_df) :
X=X_df.copy()
X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
X['pred_fixed_effect'] = mdf.predict(X)
X['pred'] = X['pred_fixed_effect'] + X['random_effect']
X.to_csv('Test/merged_df_contri.csv',index=False)
X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
return X
target_col='Prospects'
target='Prospects'
# is_panel=False
# is_panel = st.session_state['is_panel']
#panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
panel_col='Panel'
date_col = 'date'
#st.write(media_data)
is_panel = True
# panel_col='markets'
date_col = 'date'
for k, v in st.session_state.items():
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
st.session_state[k] = v
authenticator = st.session_state.get('authenticator')
if authenticator is None:
authenticator = load_authenticator()
name, authentication_status, username = authenticator.login('Login', 'main')
auth_status = st.session_state['authentication_status']
if auth_status:
authenticator.logout('Logout', 'main')
is_state_initiaized = st.session_state.get('initialized',False)
if not is_state_initiaized:
a=1
# st.header("")
# st.markdown("<h5 style='font-weight: normal;'>MMM Readout for Selected Period</h5>", unsafe_allow_html=True)
#### Input Select Start and End Date
# Create two columns for start date and end date input
col1, col2 = st.columns(2)
# now = datetime.now()
# us_format = now.strftime("%m/%d/%Y")
with col1:
default_date = datetime(2024, 1, 28)
start_date = st.date_input("Start Date: ",value=default_date)
with col2:
default_date = datetime(2024, 2, 24)
end_date = st.date_input("End Date: ",value = default_date)
# col1, col2 = st.columns(2)
# with col1:
# fig = sf.pie_spend(start_date,end_date)
# st.plotly_chart(fig,use_container_width=True)
# with col2:
# fig = sf.pie_contributions(start_date,end_date)
# st.plotly_chart(fig,use_container_width=True)
# st.header("Distribution of Spends and Contributions")
fig = sf.pie_charts(start_date,end_date)
st.plotly_chart(fig,use_container_width=True)
# Dropdown menu options
options = [
"Month on Month",
"Year on Year"]
col1, col2 = st.columns(2)
# Create a dropdown menu
with col1:
selected_option = st.selectbox('Select a comparison', options)
with col2:
st.markdown("""</br>""",unsafe_allow_html=True)
if selected_option == "Month on Month" :
st.markdown(
f"""
<div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;">
<strong> Comparision of current month spends to previous month spends</strong>
</div>
""",
unsafe_allow_html=True
)
else :
st.markdown(
f"""
<div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;">
<strong> Comparision of current month spends to the same month in previous year</strong>
</div>
""",
unsafe_allow_html=True
)
# Waterfall chart
fig = sf.waterfall(start_date,end_date,selected_option)
st.plotly_chart(fig,use_container_width=True)
# Waterfall table
shares_df = sf.shares_df_func(start_date,end_date)
st.table(sf.waterfall_table_func(shares_df).style.format("{:.0%}"))
## Channel Contribution Bar Chart
st.plotly_chart(sf.channel_contribution(start_date,end_date),use_container_width=True)
st.plotly_chart(sf.chanel_spends(start_date,end_date),use_container_width=True)
# Format first three rows in percentage format
# styled_df = sf.shares_table_func(shares_df)
# # styled_df = styled_df.round(0).astype(int)
# styled_df.iloc[:3] = (styled_df.iloc[:3]).astype(int)
# # Round next two rows to two decimal places
# styled_df.iloc[3:5] = styled_df.iloc[3:5].round(0).astype(str)
# st.table(styled_df)
st.dataframe(sf.shares_table_func(shares_df),use_container_width=True)
st.dataframe(sf.eff_table_func(shares_df).style.format({"TOTAL SPEND": "{:,.0f}", "TOTAL SUPPORT": "{:,.0f}", "TOTAL CONTRIBUTION": "{:,.0f}"}),use_container_width=True)
### CPP CHART
st.plotly_chart(sf.cpp(start_date,end_date),use_container_width=True)
### Base decomp CHART
st.plotly_chart(sf.base_decomp(),use_container_width=True)
### Media decomp CHART
st.plotly_chart(sf.media_decomp(),use_container_width=True)
# st.write(fig.columns)
# st.dataframe(fig)
# def panel_fetch(file_selected):
# raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
# if "Panel" in raw_data_mmm_df.columns:
# panel = list(set(raw_data_mmm_df["Panel"]))
# else:
# raw_data_mmm_df = None
# panel = None
# return panel
# def rerun():
# st.rerun()
# metrics_selected='prospects'
# file_selected = (
# f"Overview_data_test_panel@#{metrics_selected}.xlsx"
# )
# panel_list = panel_fetch(file_selected)
# if "selected_markets" not in st.session_state:
# st.session_state['selected_markets']='DMA1'
# st.header('Overview of previous spends')
# selected_market= st.selectbox(
# "Select Markets",
# ["Total Market"] + panel_list
# )
# initialize_data(target_col,selected_market)
# scenario = st.session_state['scenario']
# raw_df = st.session_state['raw_df']
# st.write(scenario.actual_total_spends)
# st.write(scenario.actual_total_sales)
# columns = st.columns((1,1,3))
# with columns[0]:
# st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
# #### print(f"##################### {scenario.actual_total_sales} ##################")
# with columns[1]:
# st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales),include_indicator=False))
# actual_summary_df = create_channel_summary(scenario)
# actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
# columns = st.columns((2,1))
# #with columns[0]:
# with st.expander('Channel wise overview'):
# st.markdown(actual_summary_df.style.set_table_styles(
# [{
# 'selector': 'th',
# 'props': [('background-color', '#FFFFF')]
# },
# {
# 'selector' : 'tr:nth-child(even)',
# 'props' : [('background-color', '#FFFFF')]
# }]).to_html(), unsafe_allow_html=True)
# st.markdown("<hr>",unsafe_allow_html=True)
# ##############################
# st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
# st.markdown("<hr>",unsafe_allow_html=True)
# ################################3
# st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
# st.markdown("<hr>",unsafe_allow_html=True)
# #######################################
# selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
# selected_channel = scenario.channels.get(selected_channel_name,None)
# st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
# st.markdown("<hr>",unsafe_allow_html=True)
# elif auth_status == False:
# st.error('Username/Password is incorrect')
# if auth_status != True:
# try:
# username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
# if username_forgot_pw:
# st.success('New password sent securely')
# # Random password to be transferred to user securely
# elif username_forgot_pw == False:
# st.error('Username not found')
# except Exception as e:
# st.error(e)
# st.header("")
# st.markdown("<h5 style='font-weight: normal;'>MMM Readout for Selected Period</h5>", unsafe_allow_html=True)
# #### Input Select Start and End Date
# # Create two columns for start date and end date input
# col1, col2 = st.columns(2)
# with col1:
# start_date = st.date_input("Start Date: ")
# with col2:
# end_date = st.date_input("End Date: ")
# # Dropdown menu options
# options = [
# "Month on Month",
# "Year on Year"]
# col1, col2 = st.columns(2)
# # Create a dropdown menu
# with col1:
# selected_option = st.selectbox('Select a comparison', options)
# with col2:
# st.write("")
# # Waterfall chart
# fig = sf.waterfall(start_date,end_date,selected_option)
# st.plotly_chart(fig)
# # Waterfall table
# shares_df = sf.shares_df_func(start_date,end_date)
# st.table(sf.waterfall_table_func(shares_df).style.format("{:.0%}"))
# ## Channel Contribution Bar Chart
# st.plotly_chart(sf.channel_contribution(start_date,end_date))
# # Format first three rows in percentage format
# # styled_df = sf.shares_table_func(shares_df)
# # # styled_df = styled_df.round(0).astype(int)
# # styled_df.iloc[:3] = (styled_df.iloc[:3]).astype(int)
# # # Round next two rows to two decimal places
# # styled_df.iloc[3:5] = styled_df.iloc[3:5].round(0).astype(str)
# # st.table(styled_df)
# st.dataframe(sf.shares_table_func(shares_df))
# st.dataframe(sf.eff_table_func(shares_df))
# ### CPP CHART
# st.plotly_chart(sf.cpp(start_date,end_date))
# ### Base decomp CHART
# st.plotly_chart(sf.base_decomp())
# ### Media decomp CHART
# st.plotly_chart(sf.media_decomp())