Spaces:
Running
Running
import streamlit as st | |
from numerize.numerize import numerize | |
import io | |
import pandas as pd | |
from utilities import (format_numbers,decimal_formater, | |
channel_name_formating, | |
load_local_css,set_header, | |
initialize_data, | |
load_authenticator) | |
from openpyxl import Workbook | |
from openpyxl.styles import Alignment,Font,PatternFill | |
import pickle | |
import streamlit_authenticator as stauth | |
import yaml | |
from yaml import SafeLoader | |
from classes import class_from_dict | |
import plotly.graph_objects as go | |
from pptx import Presentation | |
from pptx.util import Inches | |
from io import BytesIO | |
import plotly.io as pio | |
st.set_page_config(layout='wide') | |
load_local_css('styles.css') | |
set_header() | |
scenarios_to_compare = [] | |
st.title("Saved Scenarios") | |
# for k, v in st.session_state.items(): | |
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'): | |
# st.session_state[k] = v | |
def comparison_scenarios_df(): | |
## create summary page | |
if len(scenarios_to_compare) == 0: | |
return | |
summary_df_spend = None | |
summary_df_prospect = None | |
# summary_df_efficiency = None | |
#=# # print(scenarios_to_download) | |
for scenario_name in scenarios_to_compare: | |
scenario_dict = st.session_state['saved_scenarios'][scenario_name] | |
_spends = [] | |
column_names = ['Date'] | |
_sales = None | |
dates = None | |
summary_rows_spend = [] | |
summary_rows_prospects = [] | |
for channel in scenario_dict['channels']: | |
if dates is None: | |
dates = channel.get('dates') | |
_spends.append(dates) | |
if _sales is None: | |
_sales = channel.get('modified_sales') | |
else: | |
_sales += channel.get('modified_sales') | |
_spends.append(channel.get('modified_spends') * channel.get('conversion_rate')) | |
column_names.append(channel.get('name')) | |
name_mod = channel_name_formating(channel['name']) | |
summary_rows_spend.append([name_mod, | |
channel.get('modified_total_spends') * channel.get('conversion_rate')]) | |
summary_rows_prospects.append([name_mod, | |
channel.get('modified_total_sales')]) | |
_spends.append(_sales) | |
# column_names.append('NRPU') | |
# scenario_df = pd.DataFrame(_spends).T | |
# scenario_df.columns = column_names | |
# summary_rows.append(['Total', | |
# scenario_dict.get('modified_total_spends') , | |
# scenario_dict.get('modified_total_sales'), | |
# scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'), | |
# '-', | |
# scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')]) | |
# columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["first", "second"]) | |
# columns_index = columns_index.append(pd.MultiIndex.from_product([[scenario_name],['Spends','NRPU','ROI','MROI','Spends per NRPU']], names=["first", "second"])) | |
columns_index = ['Channel',scenario_name] | |
if summary_df_spend is None: | |
summary_df_spend = pd.DataFrame(summary_rows_spend, columns = columns_index) | |
summary_df_spend = summary_df_spend.set_index('Channel') | |
else: | |
_df = pd.DataFrame(summary_rows_spend, columns = columns_index) | |
_df = _df.set_index('Channel') | |
summary_df_spend = summary_df_spend.merge(_df, left_index=True, right_index=True) | |
if summary_df_prospect is None: | |
summary_df_prospect = pd.DataFrame(summary_rows_prospects, columns = columns_index) | |
summary_df_prospect = summary_df_prospect.set_index('Channel') | |
else: | |
_df = pd.DataFrame(summary_rows_prospects, columns = columns_index) | |
_df = _df.set_index('Channel') | |
summary_df_prospect = summary_df_prospect.merge(_df, left_index=True, right_index=True) | |
st.session_state['disable_download_button'] = False | |
efficiency_df = pd.DataFrame(index = summary_df_prospect.index) | |
for c in summary_df_spend.columns: | |
efficiency_df[c] = (summary_df_prospect[c]/summary_df_prospect[c].sum())/(summary_df_spend[c]/summary_df_spend[c].sum()) | |
efficiency_df[c] = efficiency_df[c].round(2) | |
return summary_df_spend,summary_df_prospect,efficiency_df | |
import matplotlib.colors as mcolors | |
import plotly.colors as pc | |
def rgb_to_hex(rgb): | |
"""Convert RGB tuple to hex color.""" | |
return mcolors.to_hex(rgb) | |
def generate_color_gradient(start_color, end_color, num_colors): | |
"""Generate a list of hex color codes transitioning from start_color to end_color.""" | |
if num_colors == 1: | |
return [start_color] | |
# Define the color scale from start to end color using hex codes | |
colorscale = [[0, start_color], [1, end_color]] | |
# Generate the colors | |
colors = pc.sample_colorscale( | |
colorscale, | |
[i / (num_colors - 1) for i in range(num_colors)], | |
colortype='hex' # Use 'rgb' to get colors in RGB format | |
) | |
# print(colors) | |
# Convert RGB tuples to hex | |
# hex_colors = [rgb_to_hex(color) for color in colors] | |
return colors | |
# def generate_color_gradient(start_color, end_color, num_colors): | |
# import plotly.express as px | |
# """Generate a list of hex color codes transitioning from start_color to end_color.""" | |
# colors = px.colors.sequential.Plasma # Using a built-in color scale | |
# custom_colors = px.colors.sample_colorscale( | |
# colorscale=[[0, start_color], [1, end_color]], | |
# n_colors=num_colors | |
# ) | |
# return custom_colors | |
def plot_comparison_chart(df,metric,custom_colors): | |
# print(metric) | |
# print(custom_colors) | |
custom_colors = [ | |
"#4169E1", # Royal Blue | |
"#ADD8E6", # Light Blue | |
"#FF7F50" , # Coral | |
"#87CEEB", # Sky Blue | |
"#FA8072", # Salmon | |
"#1E90FF", # Dodger Blue | |
"#00008B" , | |
"#F08080", # Light Coral | |
"#FF8C00", # Dark Orange | |
"#FFA500", # Orange | |
] | |
# Create traces for each column | |
traces = [] | |
for i,column in enumerate(df.columns): | |
# print(i) | |
# print(custom_colors[i]) | |
traces.append(go.Bar( | |
x=df.index, | |
y=df[column], | |
name=column, | |
text=df[column].apply(numerize), # Adding text for each point | |
textposition='auto', | |
hoverinfo='x+y+text', | |
marker_color = custom_colors[i] | |
)) | |
# Create the layout | |
layout = go.Layout( | |
title='Comparing '+ metric, | |
xaxis_title="Channels", | |
yaxis_title=metric, | |
barmode='group' | |
) | |
# Create the figure | |
fig = go.Figure(data=traces, layout=layout) | |
fig.update_layout( | |
legend=dict( | |
orientation="h", # Horizontal orientation | |
yanchor="top", # Anchor the legend at the top | |
y=-0.45, # Position the legend below the plot area | |
xanchor="center", # Center the legend horizontally | |
x=0.5 # Center the legend on the x-axis | |
) | |
) | |
return fig | |
def save_ppt_file(fig1,fig2,fig3): | |
# Initialize PowerPoint presentation | |
prs = Presentation() | |
# Helper function to add Plotly figure to slide | |
def add_plotly_chart_to_slide(slide, fig, left, top, width, height): | |
img_stream = BytesIO() | |
pio.write_image(fig, img_stream, format='png',engine="orca") | |
slide.shapes.add_picture(img_stream, left, top, width, height) | |
slide_1 = prs.slides.add_slide(prs.slide_layouts[6]) | |
# title_1 = slide_1.shapes.title | |
# title_1.text = "Comparing Spends" | |
add_plotly_chart_to_slide(slide_1, fig1, Inches(0), Inches(0.25), width=Inches(10), height=Inches(6)) | |
slide_2 = prs.slides.add_slide(prs.slide_layouts[6]) | |
# title_2 = slide_2.shapes.title | |
# title_2.text = "Comparing Contributions" | |
add_plotly_chart_to_slide(slide_2, fig2, Inches(0), Inches(0.25), width=Inches(10), height=Inches(6)) | |
slide_3 = prs.slides.add_slide(prs.slide_layouts[6]) | |
# title_3 = slide_3.shapes.title | |
# title_3.text = "Comparing Efficiency" | |
add_plotly_chart_to_slide(slide_3, fig3, Inches(0), Inches(0.25), width=Inches(10), height=Inches(6)) | |
ppt_stream = BytesIO() | |
prs.save(ppt_stream) | |
ppt_stream.seek(0) | |
return ppt_stream.getvalue() | |
def create_comparison_plots(): | |
# comparison_scenarios_df() | |
spends_df, prospects_df, efficiency_df = comparison_scenarios_df() | |
# st.dataframe(spends_df) | |
blue = "#0000FF" # Blue | |
green = "#00FF00" # Green | |
red = "#FF0000" # Red | |
custom_colors = generate_color_gradient(blue, red, spends_df.shape[1]) | |
st.plotly_chart(plot_comparison_chart(spends_df,"Spends",custom_colors),use_container_width=True) | |
st.plotly_chart(plot_comparison_chart(prospects_df,"Contributions",custom_colors),use_container_width=True) | |
st.plotly_chart(plot_comparison_chart(efficiency_df,"Efficiency",custom_colors),use_container_width=True) | |
fig1 = plot_comparison_chart(spends_df,"Spends",custom_colors) | |
fig2 = plot_comparison_chart(prospects_df,"Contributions",custom_colors) | |
fig3 = plot_comparison_chart(efficiency_df,"Efficiency",custom_colors) | |
ppt_file = save_ppt_file(fig1,fig2,fig3) | |
# Add a download button | |
st.download_button( | |
label="Download Comparision Analysis", | |
data=ppt_file, | |
file_name="MMM_Scenario_Comparision.pptx", | |
mime="application/vnd.openxmlformats-officedocument.presentationml.presentation" | |
) | |
def create_scenario_summary(scenario_dict): | |
summary_rows = [] | |
actual_total_spends = scenario_dict.get('actual_total_spends'), | |
modified_total_spends = scenario_dict.get('modified_total_spends'), | |
actual_total_sales = scenario_dict.get('actual_total_sales'), | |
modified_total_sales = scenario_dict.get('modified_total_sales') | |
# st.write(modified_total_spends[0]) | |
# st.write(actual_total_spends[0]) | |
# st.write(modified_total_sales) | |
# st.write(actual_total_sales[0]) | |
# st.write(modified_total_spends[0]) | |
for channel_dict in scenario_dict['channels']: | |
# st.write(channel_dict['name']) | |
name_mod = channel_name_formating(channel_dict['name']) | |
summary_rows.append([name_mod, | |
channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate'), | |
channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate'), | |
channel_dict.get('actual_total_sales') , | |
channel_dict.get('modified_total_sales'), | |
# channel_dict.get('modified_total_sales')/modified_total_spends[0], | |
# channel_dict.get('modified_total_sales')/modified_total_spends[0] | |
# 1,2 | |
(channel_dict.get('actual_total_sales') /actual_total_sales[0])/(channel_dict.get('actual_total_spends') /actual_total_spends[0] ), | |
(channel_dict.get('modified_total_sales') /modified_total_sales )/(channel_dict.get('modified_total_spends') /modified_total_spends[0] ) | |
# # # channel_dict.get('actual_mroi'), | |
# channel_dict.get('modified_mroi'), | |
# channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('actual_total_sales'), | |
# channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('modified_total_sales') | |
]) | |
summary_rows.append(['Total', | |
scenario_dict.get('actual_total_spends'), | |
scenario_dict.get('modified_total_spends'), | |
scenario_dict.get('actual_total_sales'), | |
scenario_dict.get('modified_total_sales'), | |
1.0, | |
1.0 | |
# scenario_dict.get('actual_total_sales') / scenario_dict.get('actual_total_spends'), | |
# scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'), | |
# '-', | |
# '-', | |
# scenario_dict.get('actual_total_spends') / scenario_dict.get('actual_total_sales'), | |
# scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales') | |
]) | |
adf = pd.DataFrame(summary_rows) | |
# st.write(adf.columns) | |
adf.columns = ["1","2","3","4","5","6","7"] | |
adf.index = adf["1"].to_list() #["1","2","3","4","5","6","7","8","9","10","11","12","13","14"] | |
adf.drop(columns= ["1"],inplace= True) | |
# columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["",""]) | |
# columns_index = columns_index.append(pd.MultiIndex.from_product([['Spends','Prospects',"Efficiency"],['Actual','Simulated']], names=["",""])) | |
columns_index = pd.MultiIndex.from_product([['Spends','Prospects',"Efficiency"],['Actual','Simulated']], names=["",""]) | |
adf.columns = columns_index | |
return adf # pd.DataFrame(summary_rows, columns=columns_index) | |
def summary_df_to_worksheet(df, ws): | |
heading_fill = PatternFill(fill_type='solid',start_color='FFFFFFFF',end_color='FFFFFFFF') | |
# Define border style | |
border_style = Border( | |
left=Side(border_style='thin', color='00000000'), | |
right=Side(border_style='thin', color='00000000'), | |
top=Side(border_style='thin', color='00000000'), | |
bottom=Side(border_style='thin', color='00000000') | |
) | |
number_format = '0.00' | |
for j,header in enumerate(df.columns.values): | |
col = j + 1 | |
for i in range(1,3): | |
ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='00000000') | |
ws.cell(row=i,column=j+1).fill = heading_fill | |
# ws.cell.border = border_style | |
# if col > 1 and (col - 6)%5==0: | |
# ws.merge_cells(start_row=1, end_row=1, start_column = col-3, end_column=col) | |
# ws.cell(row=1,column=col).alignment = Alignment(horizontal='center') | |
# # ws.cell.border = border_style | |
# Apply borders to all cells, including empty cells | |
for row in ws.iter_rows(): | |
for cell in row: | |
cell.border = border_style | |
for i,row in enumerate(df.itertuples()): | |
for j,value in enumerate(row): | |
if j == 0: | |
continue | |
# elif (j-2)%4 == 0 or (j-3)%4 == 0: | |
# ws.cell(row=i+3, column = j, value=value) | |
# # cell.border = border_style | |
# # .number_format = '$#,##0.0' | |
# if isinstance(value, (int, float)): | |
# cell.number_format = number_format | |
else: | |
ws.cell(row=i+3, column = j, value=value) | |
# cell.border = border_style | |
if isinstance(value, (int, float)): | |
cell.number_format = '$#,##0.0' | |
# cell.number_format = number_format | |
# Auto-size columns | |
for col in ws.columns: | |
max_length = 15 | |
column = col[0].column_letter | |
for cell in col: | |
try: | |
if len(str(cell.value)) > max_length: | |
max_length = len(cell.value) | |
except: | |
pass | |
adjusted_width = (max_length + 2) | |
ws.column_dimensions[column].width = adjusted_width | |
from openpyxl.utils import get_column_letter | |
from openpyxl.styles import Font, PatternFill | |
from openpyxl.styles import PatternFill, Font, Alignment, Border, Side | |
import logging | |
def scenario_df_to_worksheet(df, ws): | |
heading_fill = PatternFill(start_color='FF11B6BD', end_color='FF11B6BD', fill_type='solid') | |
for j, header in enumerate(df.columns.values): | |
cell = ws.cell(row=1, column=j + 1, value=header) | |
cell.font = Font(bold=True, color='FF11B6BD') | |
cell.fill = heading_fill | |
for i, row in enumerate(df.itertuples()): | |
for j, value in enumerate(row[1:], start=1): # Start from index 1 to skip the index column | |
try: | |
cell = ws.cell(row=i + 2, column=j, value=value) | |
if isinstance(value, (int, float)): | |
cell.number_format = '$#,##0.0' | |
elif isinstance(value, str): | |
cell.value = value[:32767] | |
else: | |
cell.value = str(value) | |
except ValueError as e: | |
logging.error(f"Error assigning value '{value}' to cell {get_column_letter(j)}{i+2}: {e}") | |
cell.value = None # Assign None to the cell where the error occurred | |
return ws | |
def download_scenarios(): | |
""" | |
Makes a excel with all saved scenarios and saves it locally | |
""" | |
## create summary page | |
if len(scenarios_to_download) == 0: | |
return | |
wb = Workbook() | |
wb.iso_dates = True | |
wb.remove(wb.active) | |
st.session_state['xlsx_buffer'] = io.BytesIO() | |
summary_df = None | |
## # print(scenarios_to_download) | |
for scenario_name in scenarios_to_download: | |
scenario_dict = st.session_state['saved_scenarios'][scenario_name] | |
_spends = [] | |
column_names = ['Date'] | |
_sales = None | |
dates = None | |
summary_rows = [] | |
for channel in scenario_dict['channels']: | |
if dates is None: | |
dates = channel.get('dates') | |
_spends.append(dates) | |
if _sales is None: | |
_sales = channel.get('modified_sales') | |
else: | |
_sales += channel.get('modified_sales') | |
_spends.append(channel.get('modified_spends') * channel.get('conversion_rate')) | |
column_names.append(channel.get('name')) | |
name_mod = channel_name_formating(channel['name']) | |
summary_rows.append([name_mod, | |
channel.get('modified_total_spends') * channel.get('conversion_rate') , | |
channel.get('modified_total_sales'), | |
# channel.get('modified_total_sales') / channel.get('modified_total_spends') * channel.get('conversion_rate'), | |
# channel.get('modified_mroi'), | |
# channel.get('modified_total_sales') / channel.get('modified_total_spends') * channel.get('conversion_rate') | |
]) | |
_spends.append(_sales) | |
column_names.append('NRPU') | |
scenario_df = pd.DataFrame(_spends).T | |
scenario_df.columns = column_names | |
## write to sheet | |
# ws = wb.create_sheet(scenario_name) | |
# scenario_df_to_worksheet(scenario_df, ws) | |
summary_rows.append(['Total', | |
scenario_dict.get('modified_total_spends') , | |
scenario_dict.get('modified_total_sales'), | |
# scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'), | |
# '-', | |
# scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales') | |
]) | |
columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["first", "second"]) | |
columns_index = columns_index.append(pd.MultiIndex.from_product([[scenario_name],['Spends','Prospects', | |
# 'ROI','MROI','Spends per NRPU' | |
]], names=["first", "second"])) | |
if summary_df is None: | |
summary_df = pd.DataFrame(summary_rows, columns = columns_index) | |
summary_df = summary_df.set_index(('','Channel')) | |
else: | |
_df = pd.DataFrame(summary_rows, columns = columns_index) | |
_df = _df.set_index(('','Channel')) | |
summary_df = summary_df.merge(_df, left_index=True, right_index=True) | |
ws = wb.create_sheet('Summary',0) | |
summary_df_to_worksheet(summary_df.reset_index(), ws) | |
wb.save(st.session_state['xlsx_buffer']) | |
st.session_state['disable_download_button'] = False | |
def disable_download_button(): | |
st.session_state['disable_download_button'] =True | |
def transform(x): | |
if x.name == ("",'Channel'): | |
return x | |
elif x.name[0] == 'Efficiency' or x.name[0] == 'MROI': | |
return x.apply(lambda y : y if isinstance(y,str) else decimal_formater(format_numbers(y,include_indicator=False,n_decimals=2),n_decimals=2)) | |
else: | |
return x.apply(lambda y : y if isinstance(y,str) else format_numbers(y)) | |
def delete_scenario(): | |
if selected_scenario in st.session_state['saved_scenarios']: | |
del st.session_state['saved_scenarios'][selected_scenario] | |
with open('../saved_scenarios.pkl', 'wb') as f: | |
pickle.dump(st.session_state['saved_scenarios'],f) | |
def load_scenario(): | |
if selected_scenario in st.session_state['saved_scenarios']: | |
st.session_state['scenario'] = class_from_dict(selected_scenario_details) | |
authenticator = st.session_state.get('authenticator') | |
if authenticator is None: | |
authenticator = load_authenticator() | |
name, authentication_status, username = authenticator.login('Login', 'main') | |
auth_status = st.session_state.get('authentication_status') | |
if auth_status == True: | |
is_state_initiaized = st.session_state.get('initialized',False) | |
if not is_state_initiaized: | |
## # print("Scenario page state reloaded") | |
initialize_data(target_file = "Overview_data_test_panel@#prospects.xlsx") | |
saved_scenarios = st.session_state['saved_scenarios'] | |
if len(saved_scenarios) ==0: | |
st.header('No saved scenarios') | |
else: | |
with st.sidebar: | |
with st.expander('View Scenario Details'): | |
st.markdown("""<hr>""", unsafe_allow_html=True) | |
selected_scenario = st.selectbox('Select the scenario',list(saved_scenarios.keys())) | |
# selected_scenario = st.radio( | |
# 'Pick a scenario to view details', | |
# list(saved_scenarios.keys()) | |
# ) | |
st.button('Delete scenario', on_click=delete_scenario) | |
with st.expander('Download Scenario'): | |
st.markdown("""<hr>""", unsafe_allow_html=True) | |
scenarios_to_download = st.multiselect('Select scenarios to download', | |
list(saved_scenarios.keys())) | |
st.button('Prepare download',on_click=download_scenarios) | |
st.download_button( | |
label="Download Scenarios", | |
data=st.session_state['xlsx_buffer'].getvalue(), | |
file_name="scenarios.xlsx", | |
mime="application/vnd.ms-excel", | |
disabled= st.session_state['disable_download_button'], | |
on_click= disable_download_button | |
) | |
with st.expander('Compare Scenarios'): | |
st.markdown("""<hr>""", unsafe_allow_html=True) | |
scenarios_to_compare = st.multiselect('Select scenarios to compare', | |
list(saved_scenarios.keys())) | |
st.button('Compare') | |
column_1, column_2,column_3 = st.columns((6,1,1)) | |
with column_1: | |
st.markdown(f'<span style="font-size:28px"><strong>Selected Scenario:</strong> {selected_scenario}</span>', unsafe_allow_html=True) | |
# st.header(f"Selected Scenario: {selected_scenario}") | |
# with column_3: | |
# st.write("") | |
# st.button('Delete scenario', on_click=delete_scenario) | |
# with column_3: | |
# st.button('Load Scenario', on_click=load_scenario) | |
selected_scenario_details = saved_scenarios[selected_scenario] | |
pd.set_option('display.max_colwidth', 100) | |
# st.table(create_scenario_summary(selected_scenario_details)) | |
# st.table(create_scenario_summary(selected_scenario_details).transform(transform)) | |
adf = create_scenario_summary(selected_scenario_details).transform(transform) | |
# adf1 = adf[('Spends', 'Actual'), | |
# ( 'Spends', 'Simulated'), | |
# ( 'Prospects','Actual'), | |
# ( 'Prospects', 'Simulated')].transform(transform) | |
# adf2 = adf[('Efficiency', 'Actual'), | |
# ('Efficiency', 'Simulated')].round(2) | |
# st.write(adf.columns) | |
# adf = adf.set_index([('', 'Channel')])#, inplace=True) | |
# st.table(adf) | |
st.markdown(adf.style.set_table_styles( | |
[ | |
# { | |
# 'selector': 'th', | |
# 'props': [('background-color', '#1167bd')] | |
# }, | |
# { | |
# 'selector' : 'tr:nth-child(even)', | |
# 'props' : [('background-color', '#11B6BD')] | |
# } | |
]).to_html(),unsafe_allow_html=True) | |
st.markdown("<br><br>", unsafe_allow_html=True) | |
with st.expander('Scenario Comparison'): | |
st.header("Scenario Comparison") | |
if len(scenarios_to_compare)== 0: | |
st.write("") | |
else: | |
create_comparison_plots() | |
elif auth_status == False: | |
st.error('Username/Password is incorrect') | |
if auth_status != True: | |
try: | |
username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password') | |
if username_forgot_pw: | |
st.success('New password sent securely') | |
# Random password to be transferred to user securely | |
elif username_forgot_pw == False: | |
st.error('Username not found') | |
except Exception as e: | |
st.error(e) | |
# create_comparison_plots() |