Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy.optimize import curve_fit | |
from sklearn.preprocessing import MinMaxScaler | |
import warnings | |
import warnings | |
warnings.filterwarnings("ignore") | |
import os | |
import plotly.graph_objects as go | |
from datetime import datetime,timedelta | |
from plotly.subplots import make_subplots | |
import pandas as pd | |
import json | |
from numerize.numerize import numerize | |
# working_directory = r"C:\Users\PragyaJatav\Downloads\Deliverables\Deliverables\Response Curves 09_07_24\Response Curves Resources" | |
# os.chdir(working_directory) | |
## reading input data | |
df= pd.read_csv('response_curves_input_file.csv') | |
df.dropna(inplace=True) | |
df['Date'] = pd.to_datetime(df['Date']) | |
df.reset_index(inplace=True) | |
# df | |
spend_cols = ['tv_broadcast_spend', | |
'tv_cable_spend', | |
'stream_video_spend', | |
'olv_spend', | |
'disp_prospect_spend', | |
'disp_retarget_spend', | |
'social_prospect_spend', | |
'social_retarget_spend', | |
'search_brand_spend', | |
'search_nonbrand_spend', | |
'cm_spend', | |
'audio_spend', | |
'email_spend'] | |
spend_cols2 = ['tv_broadcast_spend', | |
'tv_cable_spend', | |
'stream_video_spend', | |
'olv_spend', | |
'disp_prospect_spend', | |
'disp_retarget_spend', | |
'social_prospect_spend', | |
'social_retarget_spend', | |
'search_brand_spend', | |
'search_nonbrand_spend', | |
'cm_spend', | |
'audio_spend', | |
'email_spend', 'Date'] | |
metric_cols = ['tv_broadcast_grp', | |
'tv_cable_grp', | |
'stream_video_imp', | |
'olv_imp', | |
'disp_prospect_imp', | |
'disp_retarget_imp', | |
'social_prospect_imp', | |
'social_retarget_imp', | |
'search_brand_imp', | |
'search_nonbrand_imp', | |
'cm_spend', | |
'audio_imp', | |
'email_imp'] | |
channels = [ | |
'BROADCAST TV', | |
'CABLE TV', | |
'CONNECTED & OTT TV', | |
'VIDEO', | |
'DISPLAY PROSPECTING', | |
'DISPLAY RETARGETING', | |
'SOCIAL PROSPECTING', | |
'SOCIAL RETARGETING', | |
'SEARCH BRAND', | |
'SEARCH NON-BRAND', | |
'DIGITAL PARTNERS', | |
'AUDIO', | |
'EMAIL'] | |
channels2 = [ | |
'BROADCAST TV', | |
'CABLE TV', | |
'CONNECTED & OTT TV', | |
'VIDEO', | |
'DISPLAY PROSPECTING', | |
'DISPLAY RETARGETING', | |
'SOCIAL PROSPECTING', | |
'SOCIAL RETARGETING', | |
'SEARCH BRAND', | |
'SEARCH NON-BRAND', | |
'DIGITAL PARTNERS', | |
'AUDIO', | |
'EMAIL','Date'] | |
contribution_cols = [ | |
'Broadcast TV_Prospects', | |
'Cable TV_Prospects', | |
'Connected & OTT TV_Prospects', | |
'Video_Prospects', | |
'Display Prospecting_Prospects', | |
'Display Retargeting_Prospects', | |
'Social Prospecting_Prospects', | |
'Social Retargeting_Prospects', | |
'Search Brand_Prospects', | |
'Search Non-brand_Prospects', | |
'Digital Partners_Prospects', | |
'Audio_Prospects', | |
'Email_Prospects'] | |
def pie_charts(start_date,end_date): | |
start_date = pd.to_datetime(start_date) | |
end_date = pd.to_datetime(end_date) | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)] | |
data1 = pd.DataFrame(cur_data[spend_cols].sum().transpose()) | |
data2 = pd.DataFrame(cur_data[contribution_cols].sum().transpose()) | |
data1.index = channels | |
data1.columns = ["p"] | |
data2.index = channels | |
data2.columns = ["p"] | |
fig = make_subplots(rows=1, cols=2, specs=[[{'type':'domain'}, {'type':'domain'}]]) | |
fig.add_trace(go.Pie(labels=channels, | |
values=data1["p"], | |
name="t2", | |
hoverinfo='label+percent', | |
textinfo= 'label+percent', | |
showlegend= False,textfont=dict(size =10), | |
# title="Distribution of Spends" | |
), 1, 1) | |
fig.add_trace(go.Pie(labels=channels, | |
values=data2["p"], | |
name="t2", | |
hoverinfo='label+percent', | |
textinfo= 'label+percent', | |
showlegend= False, | |
textfont=dict(size = 10), | |
# title = "Distribution of Contributions" | |
), 1, 2) | |
fig.update_layout( | |
title="Distribution Of Spends And Contributions" | |
) | |
return fig | |
def pie_spend(start_date,end_date): | |
start_date = pd.to_datetime(start_date) | |
end_date = pd.to_datetime(end_date) | |
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)] | |
data = pd.DataFrame(cur_data[spend_cols].sum().transpose()) | |
data.index = channels | |
data.columns = ["p"] | |
# Create a pie chart with custom options | |
fig = go.Figure(data=[go.Pie( | |
labels=channels, | |
values=data["p"],#ype(str)+'<br>'+data.index, | |
hoverinfo='label+percent', | |
textinfo= 'label+percent', | |
showlegend= False, | |
textfont=dict(size = 10) | |
)]) | |
# Customize the layout | |
fig.update_layout( | |
title="Distribution Of Spends" | |
) | |
# Show the figure | |
return fig | |
def pie_contributions(start_date,end_date): | |
start_date = pd.to_datetime(start_date) | |
end_date = pd.to_datetime(end_date) | |
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)] | |
data = pd.DataFrame(cur_data[contribution_cols].sum().transpose()) | |
data.index = channels | |
data.columns = ["p"] | |
# Create a pie chart with custom options | |
fig = go.Figure(data=[go.Pie( | |
labels=channels, | |
values=data["p"],#ype(str)+'<br>'+data.index, | |
hoverinfo='label+percent', | |
textinfo= 'label+percent', | |
textposition='auto', | |
showlegend= False, | |
textfont=dict(size = 10) | |
)]) | |
# fig.add_annotation(showarrow=False) | |
# Customize the layout | |
fig.update_layout( | |
title="Distribution Of Contributions", | |
# margin=dict(t=0, b=0, l=0, r=0) | |
) | |
# Show the figure | |
return fig | |
def waterfall(start_date,end_date,btn_chart): | |
# if pd.isnull(start_date) == True : | |
# start_date = datetime(2024, 1, 28) | |
# if pd.isnull(end_date) == True : | |
# end_date = datetime(2024, 2, 24) | |
# start_date = datetime.strptime(start_date, "%Y-%m-%d") | |
# end_date = datetime.strptime(end_date, "%Y-%m-%d") | |
# start_date = start_date.datetime.data | |
# end_date = end_date.datetime.data | |
start_date = pd.to_datetime(start_date) | |
end_date = pd.to_datetime(end_date) | |
if btn_chart == "Month on Month": | |
start_date_prev = start_date +timedelta(weeks=-4) | |
end_date_prev = start_date +timedelta(days=-1) | |
else: | |
start_date_prev = start_date +timedelta(weeks=-52) | |
end_date_prev = start_date_prev +timedelta(weeks=4) +timedelta(days=-1) | |
prev_data = df[(df['Date'] >= start_date_prev) & (df['Date'] <= end_date_prev)] | |
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)] | |
# Example data for the waterfall chart | |
data = [ | |
{'label': 'Previous Period', 'value': round(prev_data[contribution_cols].values.sum())}, | |
{'label': 'Broadcast TV', 'value': round(cur_data['Broadcast TV_Prospects'].sum()-prev_data['Broadcast TV_Prospects'].sum())}, | |
{'label': 'Cable TV', 'value': round(cur_data['Cable TV_Prospects'].sum()-prev_data['Cable TV_Prospects'].sum())}, | |
{'label': 'Connected & OTT TV', 'value': round(cur_data['Connected & OTT TV_Prospects'].sum()-prev_data['Connected & OTT TV_Prospects'].sum())}, | |
{'label': 'Video', 'value': round(cur_data['Video_Prospects'].sum()-prev_data['Video_Prospects'].sum())}, | |
{'label': 'Display Prospecting', 'value': round(cur_data['Display Prospecting_Prospects'].sum()-prev_data['Display Prospecting_Prospects'].sum())}, | |
{'label': 'Display Retargeting', 'value': round(cur_data['Display Retargeting_Prospects'].sum()-prev_data['Display Retargeting_Prospects'].sum())}, | |
{'label': 'Social Prospecting', 'value': round(cur_data['Social Prospecting_Prospects'].sum()-prev_data['Social Prospecting_Prospects'].sum())}, | |
{'label': 'Social Retargeting', 'value': round(cur_data['Social Retargeting_Prospects'].sum()-prev_data['Social Retargeting_Prospects'].sum())}, | |
{'label': 'Search Brand', 'value': round(cur_data['Search Brand_Prospects'].sum()-prev_data['Search Brand_Prospects'].sum())}, | |
{'label': 'Search Non-brand', 'value': round(cur_data['Search Non-brand_Prospects'].sum()-prev_data['Search Non-brand_Prospects'].sum())}, | |
{'label': 'Digital Partners', 'value': round(cur_data['Digital Partners_Prospects'].sum()-prev_data['Digital Partners_Prospects'].sum())}, | |
{'label': 'Audio', 'value': round(cur_data['Audio_Prospects'].sum()-prev_data['Audio_Prospects'].sum())}, | |
{'label': 'Email', 'value': round(cur_data['Email_Prospects'].sum()-prev_data['Email_Prospects'].sum())}, | |
{'label': 'Current Period', 'value': round(cur_data[contribution_cols].values.sum())} | |
] | |
# Calculate cumulative values for the waterfall chart | |
cumulative = [0] | |
for i in range(len(data)): | |
cumulative.append(cumulative[-1] + data[i]['value']) | |
# Adjusting values to start from zero for both first and last columns | |
cumulative[-1] = 0 # Set the last cumulative value to zero | |
# Extracting labels and values | |
labels = [item['label'] for item in data] | |
values = [item['value'] for item in data] | |
# Plotting the waterfall chart using go.Bar | |
bars = [] | |
for i in range(len(data)): | |
color = '#4A88D9' if i == 0 or i == len(data) - 1 else '#DC5537' # Blue for first and last, gray for others | |
hover_text = f"<b>{labels[i]}</b><br>Value: {abs(values[i])}" | |
bars.append(go.Bar( | |
x=[labels[i]], | |
y=[cumulative[i+1] - cumulative[i]], | |
base=[cumulative[i]], | |
text=[f"{abs(values[i]):,}"], | |
textposition='auto', | |
hovertemplate=hover_text, | |
marker=dict(color=color), | |
showlegend=False | |
)) | |
# Creating the figure | |
fig = go.Figure(data=bars) | |
# Updating layout for black background and gray gridlines | |
if btn_chart == "Month on Month": | |
fig.update_layout( | |
title=f"Change In MMM Estimated Prospect Contribution <br>{start_date_prev.strftime('%m-%d-%Y')} To {end_date_prev.strftime('%m-%d-%Y')} Vs. {start_date.strftime('%m-%d-%Y')} To {end_date.strftime('%m-%d-%Y')}" | |
,showlegend=False, | |
# plot_bgcolor='black', | |
# paper_bgcolor='black', | |
# font=dict(color='white'), # Changing font color to white for better contrast | |
xaxis=dict( | |
showgrid=False, | |
zeroline=False, # Hiding the x-axis zero line | |
), | |
yaxis=dict( | |
title="Prospects", | |
showgrid=True, | |
gridcolor='gray', # Setting y-axis gridline color to gray | |
zeroline=False, # Hiding the y-axis zero line | |
# range=[18000, max(max(cumulative), max(values)) + 1000] # Setting the y-axis range from 19k to slightly above the maximum value | |
) | |
) | |
# fig.update_xaxes( | |
# tickmode="array", | |
# # categoryorder="total ascending", | |
# tickvals=[f"{abs(values[i])}"], | |
# ticktext=[f"{abs(values[i])}"], | |
# ticklabelposition="outside", | |
# tickfont=dict(color="white"), | |
# ) | |
else : | |
fig.update_layout( | |
title=f"Change In MMM Estimated Prospect Contribution <br>{start_date_prev.strftime('%m-%d-%Y')} To {end_date_prev.strftime('%m-%d-%Y')} Vs. {start_date.strftime('%m-%d-%Y')} To {end_date.strftime('%m-%d-%Y')}" | |
,showlegend=False, | |
# plot_bgcolor='black', | |
# paper_bgcolor='black', | |
# font=dict(color='white'), # Changing font color to white for better contrast | |
xaxis=dict( | |
showgrid=False, | |
zeroline=False, # Hiding the x-axis zero line | |
), | |
yaxis=dict( | |
title="Prospects", | |
showgrid=True, | |
gridcolor='gray', # Setting y-axis gridline color to gray | |
zeroline=False, # Hiding the y-axis zero line | |
# range=[10000, max(cumulative)+1000] # Setting the y-axis range from 19k to slightly above the maximum value | |
) | |
) | |
# print(cur_data) | |
# print(prev_data) | |
# fig.show() | |
return fig | |
def shares_df_func(start_date,end_date): | |
# if pd.isnull(start_date) == True : | |
# start_date = datetime(2024, 1, 28) | |
# if pd.isnull(end_date) == True : | |
# end_date = datetime(2024, 2, 24) | |
start_date = pd.to_datetime(start_date) | |
end_date = pd.to_datetime(end_date) | |
start_date_prev = start_date +timedelta(weeks=-4) | |
end_date_prev = start_date +timedelta(days=-1) | |
prev_data = df[(df['Date'] >= start_date_prev) & (df['Date'] <= end_date_prev)] | |
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)] | |
cur_df1 = pd.DataFrame(cur_data[spend_cols].sum()).reset_index() | |
cur_df2 = pd.DataFrame(cur_data[metric_cols].sum()).reset_index() | |
cur_df3 = pd.DataFrame(cur_data[contribution_cols].sum()).reset_index() | |
cur_df1.columns = ["channels","cur_total_spend"] | |
cur_df2.columns = ["channels","cur_total_support"] | |
cur_df3.columns = ["channels","cur_total_contributions"] | |
cur_df1["channels"] = channels | |
cur_df2["channels"] = channels | |
cur_df3["channels"] = channels | |
cur_df1["cur_spend_share"] = (cur_df1["cur_total_spend"]/cur_df1["cur_total_spend"].sum())*100 | |
cur_df2["cur_support_share"] = (cur_df2["cur_total_support"]/cur_df2["cur_total_support"].sum())*100 | |
cur_df3["cur_contributions_share"] = (cur_df3["cur_total_contributions"]/cur_df3["cur_total_contributions"].sum())*100 | |
prev_df1 = pd.DataFrame(prev_data[spend_cols].sum()).reset_index() | |
prev_df2 = pd.DataFrame(prev_data[metric_cols].sum()).reset_index() | |
prev_df3 = pd.DataFrame(prev_data[contribution_cols].sum()).reset_index() | |
prev_df1.columns = ["channels","prev_total_spend"] | |
prev_df2.columns = ["channels","prev_total_support"] | |
prev_df3.columns = ["channels","prev_total_contributions"] | |
prev_df1["channels"] = channels | |
prev_df2["channels"] = channels | |
prev_df3["channels"] = channels | |
prev_df1["prev_spend_share"] = (prev_df1["prev_total_spend"]/prev_df1["prev_total_spend"].sum())*100 | |
prev_df2["prev_support_share"] = (prev_df2["prev_total_support"]/prev_df2["prev_total_support"].sum())*100 | |
prev_df3["prev_contributions_share"] = (prev_df3["prev_total_contributions"]/prev_df3["prev_total_contributions"].sum())*100 | |
cur_df = cur_df1.merge(cur_df2,on="channels",how = "inner") | |
cur_df = cur_df.merge(cur_df3,on="channels",how = "inner") | |
prev_df = prev_df1.merge(prev_df2,on="channels",how = "inner") | |
prev_df = prev_df.merge(prev_df3,on="channels",how = "inner") | |
shares_df = cur_df.merge(prev_df,on = "channels",how = "inner") | |
shares_df["Contribution Change"] = (-shares_df["prev_contributions_share"]+shares_df["cur_contributions_share"])/shares_df["prev_contributions_share"] | |
shares_df["Support Change"] = (-shares_df["prev_support_share"]+shares_df["cur_support_share"])/shares_df["prev_support_share"] | |
shares_df["Spend Change"] = (-shares_df["prev_spend_share"]+shares_df["cur_spend_share"])/shares_df["prev_spend_share"] | |
shares_df["Efficiency Index"] = shares_df["cur_contributions_share"]/shares_df["cur_spend_share"] | |
shares_df["Effectiveness Index"] = shares_df["cur_support_share"]/shares_df["cur_spend_share"] | |
return shares_df | |
def waterfall_table_func(shares_df): | |
### waterfall delta table | |
# if pd.isnull(start_date) == True : | |
# start_date = datetime(2024, 1, 28) | |
# if pd.isnull(end_date) == True : | |
# end_date = datetime(2024, 2, 24) | |
waterfall_delta_df = shares_df[["channels","Contribution Change","Support Change","Spend Change"]] | |
waterfall_delta_df = waterfall_delta_df.rename(columns = {"channels":"METRIC"}) | |
waterfall_delta_df.index = waterfall_delta_df["METRIC"] | |
waterfall_delta_df = waterfall_delta_df.round(2) | |
return (waterfall_delta_df[["Contribution Change","Support Change","Spend Change"]].transpose()) | |
def channel_contribution(start_date,end_date): | |
# if pd.isnull(start_date) == True : | |
# start_date = datetime(2024, 1, 28) | |
# if pd.isnull(end_date) == True : | |
# end_date = datetime(2024, 2, 24) | |
start_date = pd.to_datetime(start_date) | |
end_date = pd.to_datetime(end_date) | |
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)] | |
channel_df = pd.DataFrame(cur_data[contribution_cols].sum()).reset_index() | |
channel_df.columns = ["channels","contributions"] | |
channel_df["channels"] = channels | |
# Creating the bar chart | |
fig = go.Figure(data=[go.Bar( | |
x=channel_df['channels'], | |
y=round(channel_df['contributions']), | |
marker=dict(color='rgb(74, 136, 217)'), # Blue color for all bars | |
text=(channel_df['contributions']).astype(int).apply(lambda x: f"{x:,}"), | |
textposition='outside' | |
)]) | |
# Updating layout for better visualization | |
fig.update_layout( | |
title=f"Media Contribution <br> {cur_data['Date'].min().strftime('%m-%d-%Y')} To {cur_data['Date'].max().strftime('%m-%d-%Y')}", | |
# plot_bgcolor='black', | |
# paper_bgcolor='black', | |
# font=dict(color='white'), # Changing font color to white for better contrast | |
xaxis=dict( | |
showgrid=False, | |
gridcolor='gray', # Setting x-axis gridline color to gray | |
zeroline=False, # Hiding the x-axis zero line | |
), | |
yaxis=dict( | |
title="Prospect", | |
showgrid=True, | |
gridcolor='gray', # Setting y-axis gridline color to gray | |
zeroline=False, # Hiding the y-axis zero line | |
) | |
) | |
return fig | |
def chanel_spends(start_date,end_date): | |
# if pd.isnull(start_date) == True : | |
# start_date = datetime(2024, 1, 28) | |
# if pd.isnull(end_date) == True : | |
# end_date = datetime(2024, 2, 24) | |
start_date = pd.to_datetime(start_date) | |
end_date = pd.to_datetime(end_date) | |
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)] | |
channel_df = pd.DataFrame(cur_data[spend_cols].sum()).reset_index() | |
channel_df.columns = ["channels","spends"] | |
channel_df["channels"] = channels | |
# Creating the bar chart | |
fig = go.Figure(data=[go.Bar( | |
x=channel_df['channels'], | |
y=round(channel_df['spends']), | |
marker=dict(color='rgb(74, 136, 217)'), # Blue color for all bars | |
text=channel_df['spends'].apply(numerize), | |
# text = (channel_df['spends']).astype(int).apply(lambda x: f"{x:,}"), | |
textposition='outside' | |
)]) | |
# Updating layout for better visualization | |
fig.update_layout( | |
title=f"Media Spends <br> {cur_data['Date'].min().strftime('%m-%d-%Y')} To {cur_data['Date'].max().strftime('%m-%d-%Y')}", | |
# plot_bgcolor='black', | |
# paper_bgcolor='black', | |
# font=dict(color='white'), # Changing font color to white for better contrast | |
xaxis=dict( | |
showgrid=False, | |
gridcolor='gray', # Setting x-axis gridline color to gray | |
zeroline=False, # Hiding the x-axis zero line | |
), | |
yaxis=dict( | |
title="Spends ($)", | |
showgrid=True, | |
gridcolor='gray', # Setting y-axis gridline color to gray | |
zeroline=False, # Hiding the y-axis zero line | |
) | |
) | |
return fig | |
def shares_table_func(shares_df): | |
# if pd.isnull(start_date) == True : | |
# start_date = datetime(2024, 1, 28) | |
# if pd.isnull(end_date) == True : | |
# end_date = datetime(2024, 2, 24) | |
### Shares tables | |
shares_table_df = shares_df[["channels","cur_spend_share","cur_support_share","cur_contributions_share","Efficiency Index","Effectiveness Index"]] | |
shares_table_df = shares_table_df.rename(columns = {"channels":"METRIC", | |
"cur_spend_share":"Spend Share", | |
"cur_support_share":"Support Share", | |
"cur_contributions_share":"Contribution Share"}) | |
shares_table_df.index = shares_table_df["METRIC"] | |
for c in ["Spend Share","Support Share","Contribution Share"]: | |
shares_table_df[c] = shares_table_df[c].astype(int) | |
shares_table_df[c] = shares_table_df[c].astype(str)+'%' | |
for c in ["Efficiency Index","Effectiveness Index"]: | |
shares_table_df[c] = shares_table_df[c].round(2).astype(str) | |
shares_table_df = shares_table_df[["Spend Share","Support Share","Contribution Share","Efficiency Index","Effectiveness Index"]].transpose() | |
return (shares_table_df) | |
def eff_table_func(shares_df): | |
# if pd.isnull(start_date) == True : | |
# start_date = datetime(2024, 1, 28) | |
# if pd.isnull(end_date) == True : | |
# end_date = datetime(2024, 2, 24) | |
media_df = shares_df[['channels', 'cur_total_spend',"cur_total_support", "cur_total_contributions" ,'cur_spend_share', | |
'cur_support_share', 'cur_contributions_share', 'Efficiency Index', 'Effectiveness Index']] | |
media_df = media_df.rename(columns = {"channels":"MEDIA", | |
"cur_total_spend":"TOTAL SPEND", | |
"cur_total_support":"TOTAL SUPPORT", | |
"cur_total_contributions":"TOTAL CONTRIBUTION", | |
"cur_spend_share":"SPEND SHARE", | |
"cur_support_share":"SUPPORT SHARE", | |
"cur_contributions_share":"CONTRIBUTION SHARE", | |
'Efficiency Index':'EFFICIENCY INDEX', | |
'Effectiveness Index' :'EFFECTIVENESS INDEX' | |
}) | |
media_df.index = media_df["MEDIA"] | |
media_df.drop(columns = ["MEDIA"],inplace = True) | |
for c in ["TOTAL SPEND","TOTAL SUPPORT","TOTAL CONTRIBUTION"]: | |
media_df[c] = media_df[c].astype(int) | |
for c in ["SPEND SHARE","SUPPORT SHARE","CONTRIBUTION SHARE"]: | |
media_df[c] = media_df[c].astype(int) | |
media_df[c] = media_df[c].astype(str)+'%' | |
for c in ['EFFICIENCY INDEX','EFFECTIVENESS INDEX']: | |
media_df[c] = media_df[c].round(2).astype(str) | |
return (media_df) | |
def cpp(start_date,end_date): | |
# if pd.isnull(start_date) == True : | |
# start_date = datetime(2024, 1, 28) | |
# if pd.isnull(end_date) == True : | |
# end_date = datetime(2024, 2, 24) | |
start_date = pd.to_datetime(start_date) | |
end_date = pd.to_datetime(end_date) | |
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)] | |
fig = go.Figure() | |
colors = [ | |
'rgba(74, 136, 217, 0.8)', # Blue | |
'rgba(220, 85, 55, 0.8)', # Red | |
'rgba(67, 150, 80, 0.8)', # Green | |
'rgba(237, 151, 35, 0.8)', # Orange | |
'rgba(145, 68, 255, 0.8)', # Purple | |
'rgba(128, 128, 128, 0.8)', # Gray | |
'rgba(255, 165, 0, 0.8)', # Amber | |
'rgba(255, 192, 203, 0.8)', # Pink | |
'rgba(0, 191, 255, 0.8)', # Deep Sky Blue | |
'rgba(127, 255, 0, 0.8)', # Chartreuse | |
'rgba(255, 69, 0, 0.8)', # Red-Orange | |
'rgba(75, 0, 130, 0.8)', # Indigo | |
'rgba(240, 230, 140, 0.8)', # Khaki | |
'rgba(218, 112, 214, 0.8)' | |
] | |
for i in range(0,13): | |
cpp_df = cur_data[['Date',spend_cols[i],contribution_cols[i]]] | |
cpp_df[channels[i]+"_cpp"] = cpp_df[spend_cols[i]]/cpp_df[contribution_cols[i]] | |
# Add each line trace | |
fig.add_trace(go.Scatter(x=cpp_df['Date'], y=cpp_df[channels[i]+"_cpp"], mode='lines', name=channels[i])) | |
# Update layout for better visualization | |
fig.update_layout( | |
title=f"CPP Distribution <br>{cur_data['Date'].min().strftime('%m-%d-%Y')} To {cur_data['Date'].max().strftime('%m-%d-%Y')}" | |
, | |
# plot_bgcolor='black', | |
# paper_bgcolor='black', | |
# font=dict(color='white'), # Changing font color to white for better contrast | |
xaxis=dict( | |
showgrid=True, | |
gridcolor='gray', # Setting x-axis gridline color to gray | |
zeroline=False, # Hiding the x-axis zero line | |
), | |
yaxis=dict( | |
title="CPP", | |
showgrid=True, | |
gridcolor='gray', # Setting y-axis gridline color to gray | |
zeroline=False, # Hiding the y-axis zero line | |
), | |
hovermode='x' # Show hover info for all lines at a single point | |
) | |
return fig | |
def base_decomp(): | |
# if pd.isnull(start_date) == True : | |
# start_date = datetime(2024, 1, 28) | |
# if pd.isnull(end_date) == True : | |
# end_date = datetime(2024, 2, 24) | |
base_decomp_df = df[['Date','Unemployment', 'Competition','Trend','Seasonality','Base_0']] | |
fig = go.Figure() | |
# Add each line trace | |
fig.add_trace(go.Scatter(x=base_decomp_df['Date'], y=base_decomp_df['Base_0'], mode='lines', name='Trend and Seasonality')) | |
fig.add_trace(go.Scatter(x=base_decomp_df['Date'], y=base_decomp_df['Unemployment'], mode='lines', name='Unemployment')) | |
fig.add_trace(go.Scatter(x=base_decomp_df['Date'], y=base_decomp_df['Competition'], mode='lines', name='Competition')) | |
# Update layout for better visualization | |
fig.update_layout( | |
title=f"Base Decomposition" | |
# <br>{cur_data['Date'].min().strftime('%m-%d-%Y')} to {cur_data['Date'].max().strftime('%m-%d-%Y')}" | |
, | |
# plot_bgcolor='black', | |
# paper_bgcolor='black', | |
# font=dict(color='white'), # Changing font color to white for better contrast | |
xaxis=dict( | |
showgrid=False, | |
gridcolor='gray', # Setting x-axis gridline color to gray | |
zeroline=True, # Hiding the x-axis zero line | |
), | |
yaxis=dict( | |
title="Prospect", | |
showgrid=True, | |
gridcolor='gray', # Setting y-axis gridline color to gray | |
zeroline=False, # Hiding the y-axis zero line | |
), | |
hovermode='x' # Show hover info for all lines at a single point | |
) | |
return fig | |
def media_decomp(): | |
# if pd.isnull(start_date) == True : | |
# start_date = datetime(2024, 1, 28) | |
# if pd.isnull(end_date) == True : | |
# end_date = datetime(2024, 2, 24) | |
df['base'] = df[ 'Base_0']+df['Unemployment']+df['Competition'] | |
cols = ['Date', | |
'base', | |
'Broadcast TV_Prospects', | |
'Cable TV_Prospects', | |
'Connected & OTT TV_Prospects', | |
'Video_Prospects', | |
'Display Prospecting_Prospects', | |
'Display Retargeting_Prospects', | |
'Social Prospecting_Prospects', | |
'Social Retargeting_Prospects', | |
'Search Brand_Prospects', | |
'Search Non-brand_Prospects', | |
'Digital Partners_Prospects', | |
'Audio_Prospects', | |
'Email_Prospects', | |
] | |
media_decomp_df = df[cols] | |
# Calculating the cumulative sum for stacking | |
cumulative_df = media_decomp_df.copy() | |
# for channel in media_decomp_df.columns[1:]: | |
# cumulative_df[channel] = cumulative_df[channel] + cumulative_df[channel].shift(1, fill_value=0) | |
media_cols = media_decomp_df.columns | |
for i in range(2,len(media_cols)): | |
# print(media_cols[i]) | |
cumulative_df[media_cols[i]] = cumulative_df[media_cols[i]] + cumulative_df[media_cols[i-1]] | |
# cumulative_df | |
# Creating the stacked area chart | |
fig = go.Figure() | |
colors =colors = [ | |
'rgba(74, 136, 217, 0.8)', # Blue | |
'rgba(220, 85, 55, 0.8)', # Red | |
'rgba(67, 150, 80, 0.8)', # Green | |
'rgba(237, 151, 35, 0.8)', # Orange | |
'rgba(145, 68, 255, 0.8)', # Purple | |
'rgba(128, 128, 128, 0.8)', # Gray | |
'rgba(255, 165, 0, 0.8)', # Amber | |
'rgba(255, 192, 203, 0.8)', # Pink | |
'rgba(0, 191, 255, 0.8)', # Deep Sky Blue | |
'rgba(127, 255, 0, 0.8)', # Chartreuse | |
'rgba(255, 69, 0, 0.8)', # Red-Orange | |
'rgba(75, 0, 130, 0.8)', # Indigo | |
'rgba(240, 230, 140, 0.8)', # Khaki | |
'rgba(218, 112, 214, 0.8)' | |
] | |
for idx, channel in enumerate(media_decomp_df.columns[1:]): | |
fig.add_trace(go.Scatter( | |
x=media_decomp_df['Date'], | |
y=cumulative_df[channel], | |
fill='tonexty' if idx > 0 else 'tozeroy', # Fill to the previous curve | |
mode='none', | |
name=str.split(channel,'_')[0], | |
text=media_decomp_df[channel], # Adding text for each point | |
hoverinfo='x+y+text', | |
fillcolor=colors[idx] # Different color for each channel | |
)) | |
# Updating layout for better visualization | |
fig.update_layout( | |
title=f"Media Decomposition",# <br>{cur_data['Date'].min().strftime('%m-%d-%Y')} to {cur_data['Date'].max().strftime('%m-%d-%Y')}", | |
# plot_bgcolor='black', | |
# paper_bgcolor='black', | |
# font=dict(color='white'), # Changing font color to white for better contrast | |
xaxis=dict( | |
showgrid=False, | |
gridcolor='gray', # Setting x-axis gridline color to gray | |
zeroline=False, # Hiding the x-axis zero line | |
), | |
yaxis=dict( | |
title="Prospect", | |
showgrid=True, | |
gridcolor='gray', # Setting y-axis gridline color to gray | |
zeroline=False, # Hiding the y-axis zero line | |
) | |
) | |
return fig | |
def mmm_model_quality(): | |
base_df = df[['Date',"Y_hat","Y"]] | |
fig = go.Figure() | |
# Add each line trace | |
fig.add_trace(go.Scatter(x=base_df['Date'], y=base_df['Y_hat'], mode='lines', name='Predicted')) | |
fig.add_trace(go.Scatter(x=base_df['Date'], y=base_df['Y'], mode='lines', name='Actual (Prospect)')) | |
# Update layout for better visualization | |
fig.update_layout( | |
title=f"Model Predicted V/S Actual Prospects" | |
, | |
# plot_bgcolor='black', | |
# paper_bgcolor='black', | |
# font=dict(color='white'), # Changing font color to white for better contrast | |
xaxis=dict( | |
showgrid=False, | |
gridcolor='gray', # Setting x-axis gridline color to gray | |
zeroline=False, # Hiding the x-axis zero line | |
), | |
yaxis=dict( | |
title="Prospects", | |
showgrid=True, | |
gridcolor='gray', # Setting y-axis gridline color to gray | |
zeroline=False, # Hiding the y-axis zero line | |
), | |
hovermode='x' # Show hover info for all lines at a single point | |
) | |
return(fig) | |
def media_data(): | |
# Path to your JSON file | |
json_file_path = "all_solutions_2024-05-09.json" | |
# Read the JSON file | |
with open(json_file_path, 'r') as file: | |
json_data = json.load(file) | |
# Initialize a list to store the extracted data | |
extracted_data = [] | |
# Extract half_life and coeff from media_params | |
for params_type in ["control_params","other_params","media_params"]: | |
for media, params in json_data['solution_0']['solution'][params_type].items(): | |
try: | |
extracted_data.append({ | |
'category': media,# str.split(params_type,'_')[0], | |
'half_life': params['half_life'], | |
'coeff': params['coeff'] | |
}) | |
except: | |
extracted_data.append({ | |
'category':media,# str.split(params_type,'_')[0], | |
'half_life': None, | |
'coeff': params['coeff'] | |
}) | |
media_df = pd.DataFrame(extracted_data) | |
return media_df | |
def elasticity(media_df): | |
fig = go.Figure() | |
# media_df = media_df[["category","coeff"]] | |
fig.add_trace(go.Bar( | |
x=media_df['coeff'], | |
y=media_df['category'], | |
orientation='h', # Setting the orientation to horizontal | |
marker_color='rgba(75, 136, 257, 1)', | |
text= media_df['coeff'].round(2), | |
textposition="outside" | |
)) | |
# Updating layout for better visualization | |
fig.update_layout( | |
title="Media And Baseline Elasticity", | |
xaxis=dict( | |
title="Elasticity (coefficient)", | |
showgrid=True, | |
gridcolor='gray', # Setting x-axis gridline color to gray | |
zeroline=False, # Hiding the x-axis zero line | |
), | |
yaxis=dict( | |
showgrid=False, | |
gridcolor='gray', # Setting y-axis gridline color to gray | |
zeroline=False, # Hiding the y-axis zero line | |
), | |
# plot_bgcolor='black', | |
# paper_bgcolor='black', | |
# font=dict(color='lightgray') # Changing font color to white for better contrast | |
) | |
return fig | |
def half_life(media_df): | |
fig = go.Figure() | |
# media_df = media_df[["category","coeff"]] | |
fig.add_trace(go.Bar( | |
x=media_df[media_df['half_life'].isnull()==False]['half_life'], | |
y=media_df[media_df['half_life'].isnull()==False]['category'], | |
orientation='h', # Setting the orientation to horizontal | |
marker_color='rgba(75, 136, 257, 1)', | |
text= media_df['coeff'].round(2), | |
textposition="outside" | |
)) | |
# Updating layout for better visualization | |
fig.update_layout( | |
title="Media Half-life", | |
xaxis=dict( | |
title="Weeks", | |
showgrid=True, | |
gridcolor='gray', # Setting x-axis gridline color to gray | |
zeroline=False, # Hiding the x-axis zero line | |
), | |
yaxis=dict( | |
showgrid=False, | |
gridcolor='gray', # Setting y-axis gridline color to gray | |
zeroline=False, # Hiding the y-axis zero line | |
), | |
# plot_bgcolor='black', | |
# paper_bgcolor='black', | |
# font=dict(color='lightgray') # Changing font color to white for better contrast | |
) | |
return fig | |
# media metrics table | |
n = 104 | |
k = 18 | |
def calculate_aic(y, y_hat): | |
n = len(y) | |
sse = np.sum((y - y_hat) ** 2) | |
aic = n * np.log(sse / n) + 2 * k | |
return aic | |
def calculate_bic(y, y_hat): | |
n = len(y) | |
sse = np.sum((y - y_hat) ** 2) | |
bic = n * np.log(sse / n) + k * np.log(n) | |
return bic | |
def calculate_r_squared(y, y_hat): | |
ss_total = np.sum((y - np.mean(y)) ** 2) | |
ss_residual = np.sum((y - y_hat) ** 2) | |
r_squared = 1 - (ss_residual / ss_total) | |
return r_squared | |
# Function to calculate Adjusted R-squared | |
def calculate_adjusted_r_squared(y, y_hat): | |
n = len(y) | |
r_squared = calculate_r_squared(y, y_hat) | |
adjusted_r_squared = 1 - ((1 - r_squared) * (n - 1) / (n - k - 1)) | |
return adjusted_r_squared | |
# Function to calculate MAPE | |
def calculate_mape(y, y_hat): | |
mape = np.mean(np.abs((y - y_hat) / y)) * 100 | |
return mape | |
def model_metrics_table_func(): | |
model_metrics_df = pd.DataFrame([calculate_r_squared(df["Y"], df["Y_hat"]), | |
calculate_adjusted_r_squared(df["Y"], df["Y_hat"]), | |
calculate_mape(df["Y"], df["Y_hat"]), | |
calculate_aic(df["Y"], df["Y_hat"]), | |
calculate_bic(df["Y"], df["Y_hat"])]) | |
model_metrics_df.index = ["R-squared","Adjusted R-squared","MAPE","AIC","BIC"] | |
model_metrics_df = model_metrics_df.transpose() | |
# model_metrics_df.index = model_metrics_df["R-squared"] | |
# model_metrics_df = model_metrics_df.drop(columns=["R-squared"]) | |
model_metrics_df2 = pd.DataFrame(model_metrics_df.values,columns=["R-squared","Adjusted R-squared","MAPE","AIC","BIC"] ) | |
model_metrics_df2 = model_metrics_df2.round(2) | |
model_metrics_df2["AIC"] = model_metrics_df2["AIC"].round(0) | |
model_metrics_df2["BIC"] = model_metrics_df2["BIC"].round(0) | |
model_metrics_df2.index = [" "] | |
# model_metrics_df2 = model_metrics_df2.reset_index(drop = True) | |
return model_metrics_df2 | |
def scenario_spend_forecasting(delta_df,start_date,end_date): | |
key_df = pd.DataFrame() | |
key_df["Channel_name"] = ["Email", | |
"DisplayRetargeting", | |
"\xa0Video", | |
"BroadcastTV", | |
"SocialRetargeting", | |
"Connected&OTTTV", | |
"SearchBrand", | |
"Audio", | |
"SocialProspecting", | |
"CableTV", | |
"DisplayProspecting", | |
"SearchNon-brand", | |
"DigitalPartners"] | |
key_df["Channels"] = [ | |
"EMAIL", | |
"DISPLAY RETARGETING", | |
"VIDEO", | |
"BROADCAST TV", | |
"SOCIAL RETARGETING", | |
"CONNECTED & OTT TV", | |
"SEARCH BRAND", | |
"AUDIO", | |
"SOCIAL PROSPECTING", | |
"CABLE TV", | |
"DISPLAY PROSPECTING", | |
"SEARCH NON-BRAND", | |
"DIGITAL PARTNERS" | |
] | |
start_date = pd.to_datetime(start_date) | |
end_date = pd.to_datetime(end_date) | |
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)] | |
cur_data = cur_data[spend_cols] | |
cur_data.columns = channels | |
data1 = pd.DataFrame(cur_data[channels].sum().transpose()).reset_index() | |
data1.columns = ["Channels","last_year_spends"] | |
df_modified = delta_df.merge(key_df,on = "Channel_name",how = "inner") | |
df_modified2 = df_modified.merge(data1,on = "Channels",how ="outer") | |
# df_modified2["Forecasted Spends"] =( df_modified2["last_year_spends"]*(1+df_modified2["Delta_percent"]/100)).astype(int) | |
df_modified2["Forecasted Spends"] =( df_modified2["last_year_spends"]*(1+df_modified2["Delta_percent"]/100)).astype(int) | |
df_modified2.index = df_modified2["Channels"] | |
df_modified2["Spend Change"] = df_modified2["Delta_percent"].astype(int) | |
# df_modified2["Forecasted Spends"] = df_modified2["Forecasted Spends"].astype(int) | |
df_modified2["Last Year Spends"] = df_modified2["last_year_spends"].astype(int) | |
df_modified3 = df_modified2[["Last Year Spends","Forecasted Spends","Spend Change"]].transpose() | |
# df_modified2["forecasted_spends"] = | |
# # df_modified = delta_percent | |
# # df_modified["Optimised Spends"] = df_modified["Current Spends"]* | |
return df_modified3 | |
def scenario_spend_forecasting2(delta_df,start_date,end_date): | |
key_df = pd.DataFrame() | |
key_df["Channel_name"] = ["Email", | |
"DisplayRetargeting", | |
"\xa0Video", | |
"BroadcastTV", | |
"SocialRetargeting", | |
"Connected&OTTTV", | |
"SearchBrand", | |
"Audio", | |
"SocialProspecting", | |
"CableTV", | |
"DisplayProspecting", | |
"SearchNon-brand", | |
"DigitalPartners"] | |
key_df["Channels"] = [ | |
"EMAIL", | |
"DISPLAY RETARGETING", | |
"VIDEO", | |
"BROADCAST TV", | |
"SOCIAL RETARGETING", | |
"CONNECTED & OTT TV", | |
"SEARCH BRAND", | |
"AUDIO", | |
"SOCIAL PROSPECTING", | |
"CABLE TV", | |
"DISPLAY PROSPECTING", | |
"SEARCH NON-BRAND", | |
"DIGITAL PARTNERS" | |
] | |
import math | |
start_date = pd.to_datetime(start_date) | |
end_date = pd.to_datetime(end_date) | |
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)] | |
cur_data = cur_data[spend_cols2] | |
cur_data.columns = channels2 | |
cur_data["Date2"] = cur_data["Date"]+ pd.Timedelta(days=5) | |
# cur_data["Date"] = delta_df["Date"] | |
cur_data["Date_diff"] = (cur_data["Date"]-start_date).dt.days | |
cur_data["Date_diff_months"] =(np.ceil(cur_data["Date_diff"] / 30)) | |
data2 = cur_data.groupby("Date_diff_months").agg({ | |
'Date':"min", | |
"Date2":"max" | |
}).reset_index() | |
data1 = cur_data.groupby("Date_diff_months").agg({ | |
'BROADCAST TV':"sum", | |
'CABLE TV':"sum", | |
'CONNECTED & OTT TV':"sum", | |
'VIDEO':"sum", | |
'DISPLAY PROSPECTING':"sum", | |
'DISPLAY RETARGETING':"sum", | |
'SOCIAL PROSPECTING':"sum", | |
'SOCIAL RETARGETING':"sum", | |
'SEARCH BRAND':"sum", | |
'SEARCH NON-BRAND':"sum", | |
'DIGITAL PARTNERS':"sum", | |
'AUDIO':"sum", | |
'EMAIL':"sum" | |
}).transpose() | |
months_list = cur_data["Date_diff_months"].unique() | |
data1["Channels"]=data1.index | |
df_modified = delta_df.merge(key_df,on = "Channel_name",how = "inner") | |
df_modified2 = df_modified.merge(data1,on = "Channels",how ="outer") | |
df_modified2.index = df_modified2["Channels"] | |
data3 = pd.DataFrame(index = data1.index) | |
for c in months_list: | |
data3[c] = df_modified2[c]*(1+df_modified2["Delta_percent"]/100) | |
df1 = df_modified2[months_list].transpose() | |
df1["Metrics"] = "Last Year Spends" | |
data3 = data3.transpose() | |
data3 = data3.astype(int) | |
data2.index = data2["Date_diff_months"] | |
data2.columns = ["Date_diff_months","start date","end date"] | |
data3["start date"] = data2["start date"].dt.date | |
data3["end date"] = data2["end date"].dt.date | |
data3["Month"] = data3.index | |
cols = ["Month","start date","end date",'BROADCAST TV', | |
'CABLE TV', | |
'CONNECTED & OTT TV', | |
'VIDEO', | |
'DISPLAY PROSPECTING', | |
'DISPLAY RETARGETING', | |
'SOCIAL PROSPECTING', | |
'SOCIAL RETARGETING', | |
'SEARCH BRAND', | |
'SEARCH NON-BRAND', | |
'DIGITAL PARTNERS', | |
'AUDIO', | |
'EMAIL'] | |
# data3["Metrics"] = "Forecasted Year Spends" | |
# df2 = df_modified2["Delta_percent"].transpose() | |
# df2["Metrics"] = "Percent Change" | |
# df_modified2["last_year_spends"] = | |
# data3 = pd.DataFrame(index = data1.index) | |
# for c in months_list: | |
# for idx in data3.index: | |
# data3[c][idx] = df_modified2[c][idx]*df_modified2["Delta_percent"] | |
# data1 = data1[['Date',"Date2",'BROADCAST TV', | |
# 'CABLE TV', | |
# 'CONNECTED & OTT TV', | |
# 'VIDEO','DISPLAY PROSPECTING', | |
# 'DISPLAY RETARGETING', | |
# 'SOCIAL PROSPECTING', | |
# 'SOCIAL RETARGETING', | |
# 'SEARCH BRAND', | |
# 'SEARCH NON-BRAND', | |
# 'DIGITAL PARTNERS', | |
# 'AUDIO', | |
# 'EMAIL', | |
# ]] | |
# data1[channels] = data1[channels].astype(int) | |
# data1["Date"] = data1["Date"].dt.date | |
# data1["Date2"] = data1["Date2"].dt.date | |
# # pd.DataFrame(cur_data[channels].groupby("Date_diff_months").sum().transpose()).reset_index() | |
# # # data1.columns = ["Channels","last_year_spends"] | |
# # df_modified = delta_df.merge(key_df,on = "Channel_name",how = "inner") | |
# # df_modified2 = df_modified.merge(data1,on = "Channels",how ="outer") | |
# # df_modified2["Forecasted Spends"] =( df_modified2["last_year_spends"]*(1+df_modified2["Delta_percent"]/100)).apply(numerize) | |
# # df_modified2.index = df_modified2["Channels"] | |
# # df_modified2["Spend Change"] = df_modified2["Delta_percent"] | |
# # df_modified2["Last Year Spends"] = df_modified2["last_year_spends"].apply(numerize) | |
# # df_modified3 = df_modified2[["Last Year Spends","Forecasted Spends","Spend Change"]].transpose() | |
# # # df_modified2["forecasted_spends"] = | |
# # # # df_modified = delta_percent | |
# # # # df_modified["Optimised Spends"] = df_modified["Current Spends"]* | |
# # spend_cols1 = pd.DataFrame(spend_cols)[0].to_list() | |
return data3[cols] | |