Spaces:
Running
Running
File size: 43,107 Bytes
92a33be 3906795 92a33be 7202334 92a33be 7202334 92a33be 7202334 92a33be 7202334 92a33be 7202334 92a33be f7bb281 92a33be 7202334 92a33be f7bb281 92a33be 1e6110a 92a33be f7bb281 92a33be f7bb281 92a33be f7bb281 92a33be f7bb281 92a33be f7bb281 92a33be f7bb281 92a33be f7bb281 92a33be f7bb281 92a33be f7bb281 92a33be 7202334 92a33be 7202334 92a33be 7202334 92a33be 7202334 92a33be 7202334 92a33be 7202334 92a33be 7202334 92a33be 7202334 92a33be 7202334 92a33be 7202334 92a33be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 |
from numerize.numerize import numerize
import streamlit as st
import pandas as pd
import json
from classes import Channel, Scenario
import numpy as np
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from classes import class_to_dict
from collections import OrderedDict
import io
import plotly
from pathlib import Path
import pickle
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
from streamlit.components.v1 import html
import smtplib
from scipy.optimize import curve_fit
from sklearn.metrics import r2_score
from classes import class_from_dict
import os
import base64
color_palette = ['#001f78', '#00b5db', '#f03d14', '#fa6e0a', '#ffbf45']
CURRENCY_INDICATOR = '€'
def load_authenticator():
with open('config.yaml') as file:
config = yaml.load(file, Loader=SafeLoader)
st.session_state['config'] = config
authenticator = stauth.Authenticate(
config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry_days'],
config['preauthorized']
)
st.session_state['authenticator'] = authenticator
return authenticator
def nav_page(page_name, timeout_secs=3):
nav_script = """
<script type="text/javascript">
function attempt_nav_page(page_name, start_time, timeout_secs) {
var links = window.parent.document.getElementsByTagName("a");
for (var i = 0; i < links.length; i++) {
if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) {
links[i].click();
return;
}
}
var elasped = new Date() - start_time;
if (elasped < timeout_secs * 1000) {
setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs);
} else {
alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s).");
}
}
window.addEventListener("load", function() {
attempt_nav_page("%s", new Date(), %d);
});
</script>
""" % (page_name, timeout_secs)
html(nav_script)
# def load_local_css(file_name):
# with open(file_name) as f:
# st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# def set_header():
# return st.markdown(f"""<div class='main-header'>
# <h1>MMM LiME</h1>
# <img src="https://assets-global.website-files.com/64c8fffb0e95cbc525815b79/64df84637f83a891c1473c51_Vector%20(Stroke).svg ">
# </div>""", unsafe_allow_html=True)
# path = os.path.dirname(__file__)
# file_ = open(f"{path}/mastercard_logo.png", "rb")
# contents = file_.read()
# data_url = base64.b64encode(contents).decode("utf-8")
# file_.close()
DATA_PATH = './data'
IMAGES_PATH = './data/images_224_224'
# New - S# print 2
if 'bin_dict' not in st.session_state:
with open("data_import.pkl", "rb") as f:
data = pickle.load(f)
st.session_state['bin_dict'] = data["bin_dict"]
# panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
panel_col="Panel"
is_panel = True if len(panel_col)>0 else False
date_col='Date'
#is_panel = False # flag if set to true - do panel level response curves
def load_local_css(file_name):
with open(file_name) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# def set_header():
# return st.markdown(f"""<div class='main-header'>
# <h1>H & M Recommendations</h1>
# <img src="data:image;base64,{data_url}", alt="Logo">
# </div>""", unsafe_allow_html=True)
path1 = os.path.dirname(__file__)
file_1 = open(f"ALDI_2017.png", "rb")
contents1 = file_1.read()
data_url1 = base64.b64encode(contents1).decode("utf-8")
file_1.close()
DATA_PATH1 = './data'
IMAGES_PATH1 = './data/images_224_224'
def set_header():
return st.markdown(f"""<div class='main-header'>
<!-- <h1></h1> -->
<div >
<img class='blend-logo' src="data:image;base64,{data_url1}", alt="Logo">
</div>""", unsafe_allow_html=True)
# def set_header():
# logo_path = "./path/to/your/local/LIME_logo.png" # Replace with the actual file path
# text = "LiME"
# return st.markdown(f"""<div class='main-header'>
# <img src="data:image/png;base64,{data_url}" alt="Logo" style="float: left; margin-right: 10px; width: 100px; height: auto;">
# <h1>{text}</h1>
# </div>""", unsafe_allow_html=True)
def s_curve(x,K,b,a,x0):
return K / (1 + b * np.exp(-a*(x-x0)))
def overview_test_data_prep_panel(X, df, spends_X, date_col, panel_col, target_col):
'''
function to create the data which is used in initialize data fn
X : X test with contributions
df : originally uploaded data (media data) which has raw vars
spends_X : spends of dates in X test
'''
# define channels
channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'],
'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions'], #, 'fb:_level_achieved_-_tier_1_clicks'],
'fb_level_achieved_tier_2': ['fb:_level_achieved_tier_2_impressions',
'fb_level_achieved_tier_2_clicks'],
'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'],
'ga_app': ['ga_app_impressions', 'ga_app_clicks'],
'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'],
'kwai': ['kwai_impressions', 'kwai_clicks'],
'programmatic': ['programmatic_impressions', 'programmatic_clicks'],
# 'affiliates':['affiliates_clicks'],
#
# "indicacao":['indicacao_clicks'],
#
# "infleux":['infleux_clicks'],
#
# "influencer":['influencer_clicks']
}
channel_list = list(channels.keys())
# map transformed variable to raw variable name & channel name
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
variables = {}
channel_and_variables = {}
new_variables = {}
new_channels_and_variables = {}
for transformed_var in [col for col in
X.drop(columns=[date_col, panel_col, target_col, 'pred', 'panel_effect']).columns if
"_contr" not in col]:
if len([col for col in df.columns if col in transformed_var]) == 1:
raw_var = [col for col in df.columns if col in transformed_var][0]
variables[transformed_var] = raw_var
channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][
0]
else:
new_variables[transformed_var] = transformed_var
new_channels_and_variables[transformed_var] = 'base'
# Raw DF
raw_X = pd.merge(X[[date_col, panel_col]], df[[date_col, panel_col] + list(variables.values())], how='left',
on=[date_col, panel_col])
assert len(raw_X) == len(X)
raw_X_cols = []
for i in raw_X.columns:
if i in channel_and_variables.keys():
raw_X_cols.append(channel_and_variables[i])
else:
raw_X_cols.append(i)
raw_X.columns = raw_X_cols
# Contribution DF
contr_X = X[[date_col, panel_col, 'panel_effect'] + [col for col in X.columns if
"_contr" in col and "sum_" not in col]].copy()
new_variables = [col for col in contr_X.columns if
"_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()]
if len(new_variables) > 0:
contr_X['const'] = contr_X[['panel_effect'] + new_variables].sum(axis=1)
contr_X.drop(columns=['panel_effect'], inplace=True)
contr_X.drop(columns=new_variables, inplace=True)
else:
contr_X.rename(columns={'panel_effect': 'const'}, inplace=True)
new_contr_X_cols = []
for col in contr_X.columns:
col_clean = col.replace("_contr", "")
new_contr_X_cols.append(col_clean)
contr_X.columns = new_contr_X_cols
contr_X_cols = []
for i in contr_X.columns:
if i in variables.keys():
contr_X_cols.append(channel_and_variables[variables[i]])
else:
contr_X_cols.append(i)
contr_X.columns = contr_X_cols
# Spends DF
spends_X.columns = [col.replace("_cost", "") for col in spends_X.columns]
raw_X.rename(columns={"date": "Date"}, inplace=True)
contr_X.rename(columns={"date": "Date"}, inplace=True)
spends_X.rename(columns={'date': 'Week'}, inplace=True)
# Create excel
file_name = "data_test_overview_panel_#" + target_col + ".xlsx"
with pd.ExcelWriter(file_name) as writer:
raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False)
contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False)
spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False)
def overview_test_data_prep_nonpanel(X, df, spends_X, date_col, target_col):
'''
function to create the data which is used in initialize data fn
X : X test with contributions
df : originally uploaded data (media data) which has raw vars
spends_X : spends of dates in X test
'''
# define channels
channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'],
'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions', 'fb_level_achieved_tier_1_clicks'],
'fb_level_achieved_tier_2': ['fb_level_achieved_tier_2_impressions',
'fb_level_achieved_tier_2_clicks'],
'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'],
'ga_app_will_and_cid_pequena_baixo_risco': ['ga_app_will_and_cid_pequena_baixo_risco_impressions', 'ga_app_will_and_cid_pequena_baixo_risco_clicks'],
'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'],
'kwai': ['kwai_impressions', 'kwai_clicks'],
'programmatic': ['programmatic_impressions', 'programmatic_clicks'],
'affiliates':['affiliates_clicks', 'affiliates_impressions'],
"indicacao":['indicacao_clicks', 'indicacao_impressions'],
"infleux":['infleux_clicks', 'infleux_impressions'],
"influencer":['influencer_clicks', 'influencer_impressions']
}
channel_list = list(channels.keys())
# map transformed variable to raw variable name & channel name
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
variables = {}
channel_and_variables = {}
new_variables = {}
new_channels_and_variables = {}
cols_to_del = list(set([date_col, target_col, 'pred']).intersection((set(X.columns))))
for transformed_var in [col for col in
X.drop(columns=cols_to_del).columns if
"_contr" not in col]: # also has 'const'
if len([col for col in df.columns if col in transformed_var]) == 1: # col is raw var
raw_var = [col for col in df.columns if col in transformed_var][0]
variables[transformed_var] = raw_var
channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][0]
else: # when no corresponding raw var then base
new_variables[transformed_var] = transformed_var
new_channels_and_variables[transformed_var] = 'base'
# Raw DF
raw_X = pd.merge(X[[date_col]], df[[date_col] + list(variables.values())], how='left',
on=[date_col])
assert len(raw_X) == len(X)
raw_X_cols = []
for i in raw_X.columns:
if i in channel_and_variables.keys():
raw_X_cols.append(channel_and_variables[i])
else:
raw_X_cols.append(i)
raw_X.columns = raw_X_cols
# Contribution DF
contr_X = X[[date_col] + [col for col in X.columns if "_contr" in col and "sum_" not in col]].copy()
# st.write(contr_X.columns)
new_variables = [col for col in contr_X.columns if
"_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()]
if len(new_variables) > 0: # if new vars are available, their contributions should be added to base (called const)
contr_X['const_contr'] = contr_X[['const_contr'] + new_variables].sum(axis=1)
contr_X.drop(columns=new_variables, inplace=True)
new_contr_X_cols = []
for col in contr_X.columns:
col_clean = col.replace("_contr", "")
new_contr_X_cols.append(col_clean)
contr_X.columns = new_contr_X_cols
contr_X_cols = []
for i in contr_X.columns:
if i in variables.keys():
contr_X_cols.append(channel_and_variables[variables[i]])
else:
contr_X_cols.append(i)
contr_X.columns = contr_X_cols
# Spends DF
spends_X.columns = [col.replace("_cost", "").replace("_spends", '').replace("_spend", "") for col in spends_X.columns]
raw_X.rename(columns={"date": "Date"}, inplace=True)
contr_X.rename(columns={"date": "Date"}, inplace=True)
spends_X.rename(columns={'date': 'Week'}, inplace=True)
# Create excel
file_name = "data_test_overview_panel_#" + target_col + ".xlsx"
with pd.ExcelWriter(file_name) as writer:
raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False)
contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False)
spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False)
def initialize_data(target_col,selected_markets):
# uopx_conv_rates = {'streaming_impressions' : 0.007,'digital_impressions' : 0.007,'search_clicks' : 0.00719,'tv_impressions' : 0.000173,
# "digital_clicks":0.005,"streaming_clicks":0.004,'streaming_spends':1,"tv_spends":1,"search_spends":1,
# "digital_spends":1}
## print('State initialized')
# excel = pd.read_excel("data_test_overview_panel.xlsx",sheet_name=None)
#excel = pd.read_excel("Overview_data_test_panel@#revenue.xlsx" + target_col + ".xlsx",sheet_name=None)
excel = pd.read_excel("Overview_data_test_panel@#prospects.xlsx",sheet_name=None)
raw_df = excel['RAW DATA MMM']
spend_df = excel['SPEND INPUT']
contri_df = excel['CONTRIBUTION MMM']
#st.write(raw_df)
if selected_markets!= "Total Market":
raw_df=raw_df[raw_df['Panel']==selected_markets]
spend_df=spend_df[spend_df['Panel']==selected_markets]
contri_df=contri_df[contri_df['Panel']==selected_markets]
else:
raw_df=raw_df.groupby('Date').sum().reset_index()
spend_df=spend_df.groupby('Week').sum().reset_index()
contri_df=contri_df.groupby('Date').sum().reset_index()
#Revenue_df = excel['Revenue']
## remove sesonalities, indices etc ...
exclude_columns = ['Date', 'Week','Panel',date_col, panel_col,'Others'
]
# Aggregate all 3 dfs to date level (from date-panel level)
raw_df[date_col]=pd.to_datetime(raw_df[date_col])
raw_df_aggregations = {c:'sum' for c in raw_df.columns if c not in exclude_columns}
raw_df = raw_df.groupby(date_col).agg(raw_df_aggregations).reset_index()
contri_df[date_col]=pd.to_datetime(contri_df[date_col])
contri_df_aggregations = {c:'sum' for c in contri_df.columns if c not in exclude_columns}
contri_df = contri_df.groupby(date_col).agg(contri_df_aggregations).reset_index()
input_df = raw_df.sort_values(by=[date_col])
output_df = contri_df.sort_values(by=[date_col])
spend_df['Week'] = pd.to_datetime(spend_df['Week'], format='%Y-%m-%d', errors='coerce')
spend_df_aggregations = {c: 'sum' for c in spend_df.columns if c not in exclude_columns}
spend_df = spend_df.groupby('Week').agg(spend_df_aggregations).reset_index()
# spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce')
# spend_df = spend_df.sort_values(by='Week')
channel_list = [col for col in input_df.columns if col not in exclude_columns]
response_curves = {}
mapes = {}
rmses = {}
upper_limits = {}
powers = {}
r2 = {}
conv_rates = {}
output_cols = []
channels = {}
sales = None
dates = input_df.Date.values
actual_output_dic = {}
actual_input_dic = {}
# ONLY FOR TESTING
# channel_list=['programmatic']
infeasible_channels = [c for c in contri_df.select_dtypes(include=['float', 'int']).columns if contri_df[c].sum()<=0]
# st.write(infeasible_channels)
channel_list=list(set(channel_list)-set(infeasible_channels))
for inp_col in channel_list:
#st.write(inp_col)
# # New - S# print 2
# if is_panel:
# input_df1 = input_df.groupby([date_col]).agg({inp_col:'sum'}).reset_index() # aggregate spends on date
# spends = input_df1[inp_col].values
# else :
# spends = input_df[inp_col].values
spends = spend_df[inp_col].values
x = spends.copy()
# upper limit for penalty
upper_limits[inp_col] = 2*x.max()
# contribution
# New - S# print 2
out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0]
if is_panel :
output_df1 = output_df.groupby([date_col]).agg({out_col:'sum'}).reset_index()
y = output_df1[out_col].values.copy()
else :
y = output_df[out_col].values.copy()
actual_output_dic[inp_col] = y.copy()
actual_input_dic[inp_col] = x.copy()
##output cols aggregation
output_cols.append(out_col)
## scale the input
power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)
if power >= 0 :
x = x / 10**power
x = x.astype('float64')
y = y.astype('float64')
## print('## printing yyyyyyyyy')
## print(inp_col)
## print(x.max())
## print(y.max())
# st.write(y.max(),x.max())
# print(y.max(),x.max())
if y.max()<=0.01:
if x.max()<=0.01 :
st.write("here-here")
bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))
else :
st.write("here")
bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))
else :
bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max()))
#bounds = ((y.max(), 3*y.max()),(0,1000),(0,1),(0,x.max()))
params,_ = curve_fit(s_curve,x,y,p0=(2*y.max(),0.01,1e-5,x.max()),
bounds=bounds,
maxfev=int(1e5))
mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean()
rmse = np.sqrt(((y - s_curve(x,*params))**2).mean())
r2_ = r2_score(y, s_curve(x,*params))
response_curves[inp_col] = {'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]}
mapes[inp_col] = mape
rmses[inp_col] = rmse
r2[inp_col] = r2_
powers[inp_col] = power
## conversion rates
spend_col = [_col for _col in spend_df.columns if _col.startswith(inp_col.rsplit('_',1)[0])][0]
## print('## printing spendssss')
## print(spend_col)
conv = (spend_df.set_index('Week')[spend_col] / input_df.set_index('Date')[inp_col].clip(lower=1)).reset_index()
conv.rename(columns={'index':'Week'},inplace=True)
conv['year'] = conv.Week.dt.year
conv_rates[inp_col] = list(conv.drop('Week',axis=1).mean().to_dict().values())[0]
### print('Before',conv_rates[inp_col])
# conv_rates[inp_col] = uopx_conv_rates[inp_col]
### print('After',(conv_rates[inp_col]))
channel = Channel(name=inp_col,dates=dates,
spends=spends,
# conversion_rate = np.mean(list(conv_rates[inp_col].values())),
conversion_rate = conv_rates[inp_col],
response_curve_type='s-curve',
response_curve_params={'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]},
bounds=np.array([-10,10]))
channels[inp_col] = channel
if sales is None:
sales = channel.actual_sales
else:
sales += channel.actual_sales
# st.write(inp_col, channel.actual_sales)
# st.write(output_cols)
other_contributions = output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only = True).values
correction = output_df.drop(['Date'],axis=1).sum(axis=1).values - (sales + other_contributions)
scenario_test_df=pd.DataFrame(columns=['other_contributions','correction', 'sales'])
scenario_test_df['other_contributions']=other_contributions
scenario_test_df['correction']=correction
scenario_test_df['sales']=sales
scenario_test_df.to_csv("test/scenario_test_df.csv",index=False)
output_df.to_csv("test/output_df.csv",index=False)
scenario = Scenario(name='default', channels=channels, constant=other_contributions, correction = correction)
## setting session variables
st.session_state['initialized'] = True
st.session_state['actual_df'] = input_df
st.session_state['raw_df'] = raw_df
st.session_state['contri_df'] = output_df
default_scenario_dict = class_to_dict(scenario)
st.session_state['default_scenario_dict'] = default_scenario_dict
st.session_state['scenario'] = scenario
st.session_state['channels_list'] = channel_list
st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
st.session_state['rcs'] = response_curves
st.session_state['powers'] = powers
st.session_state['actual_contribution_df'] = pd.DataFrame(actual_output_dic)
st.session_state['actual_input_df'] = pd.DataFrame(actual_input_dic)
for channel in channels.values():
st.session_state[channel.name] = numerize(channel.actual_total_spends * channel.conversion_rate,1)
st.session_state['xlsx_buffer'] = io.BytesIO()
if Path('../saved_scenarios.pkl').exists():
with open('../saved_scenarios.pkl','rb') as f:
st.session_state['saved_scenarios'] = pickle.load(f)
else:
st.session_state['saved_scenarios'] = OrderedDict()
st.session_state['total_spends_change'] = 0
st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
st.session_state['disable_download_button'] = True
# def initialize_data():
# # fetch data from excel
# output = pd.read_excel('data.xlsx',sheet_name=None)
# raw_df = output['RAW DATA MMM']
# contribution_df = output['CONTRIBUTION MMM']
# Revenue_df = output['Revenue']
# ## channels to be shows
# channel_list = []
# for col in raw_df.columns:
# if 'click' in col.lower() or 'spend' in col.lower() or 'imp' in col.lower():
# ### print(col)
# channel_list.append(col)
# else:
# pass
# ## NOTE : Considered only Desktop spends for all calculations
# acutal_df = raw_df[raw_df.Region == 'Desktop'].copy()
# ## NOTE : Considered one year of data
# acutal_df = acutal_df[acutal_df.Date>'2020-12-31']
# actual_df = acutal_df.drop('Region',axis=1).sort_values(by='Date')[[*channel_list,'Date']]
# ##load response curves
# with open('./grammarly_response_curves.json','r') as f:
# response_curves = json.load(f)
# ## create channel dict for scenario creation
# dates = actual_df.Date.values
# channels = {}
# rcs = {}
# constant = 0.
# for i,info_dict in enumerate(response_curves):
# name = info_dict.get('name')
# response_curve_type = info_dict.get('response_curve')
# response_curve_params = info_dict.get('params')
# rcs[name] = response_curve_params
# if name != 'constant':
# spends = actual_df[name].values
# channel = Channel(name=name,dates=dates,
# spends=spends,
# response_curve_type=response_curve_type,
# response_curve_params=response_curve_params,
# bounds=np.array([-30,30]))
# channels[name] = channel
# else:
# constant = info_dict.get('value',0.) * len(dates)
# ## create scenario
# scenario = Scenario(name='default', channels=channels, constant=constant)
# default_scenario_dict = class_to_dict(scenario)
# ## setting session variables
# st.session_state['initialized'] = True
# st.session_state['actual_df'] = actual_df
# st.session_state['raw_df'] = raw_df
# st.session_state['default_scenario_dict'] = default_scenario_dict
# st.session_state['scenario'] = scenario
# st.session_state['channels_list'] = channel_list
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
# st.session_state['rcs'] = rcs
# for channel in channels.values():
# if channel.name not in st.session_state:
# st.session_state[channel.name] = float(channel.actual_total_spends)
# if 'xlsx_buffer' not in st.session_state:
# st.session_state['xlsx_buffer'] = io.BytesIO()
# ## for saving scenarios
# if 'saved_scenarios' not in st.session_state:
# if Path('../saved_scenarios.pkl').exists():
# with open('../saved_scenarios.pkl','rb') as f:
# st.session_state['saved_scenarios'] = pickle.load(f)
# else:
# st.session_state['saved_scenarios'] = OrderedDict()
# if 'total_spends_change' not in st.session_state:
# st.session_state['total_spends_change'] = 0
# if 'optimization_channels' not in st.session_state:
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
# if 'disable_download_button' not in st.session_state:
# st.session_state['disable_download_button'] = True
def create_channel_summary(scenario):
summary_columns = []
actual_spends_rows = []
actual_sales_rows = []
actual_roi_rows = []
for channel in scenario.channels.values():
name_mod = channel.name.replace('_', ' ')
if name_mod.lower().endswith(' imp'):
name_mod = name_mod.replace('Imp', ' Impressions')
# print(name_mod, channel.actual_total_spends, channel.conversion_rate,
channel.actual_total_spends * channel.conversion_rate
summary_columns.append(name_mod)
actual_spends_rows.append(format_numbers(float(channel.actual_total_spends * channel.conversion_rate)))
actual_sales_rows.append(format_numbers((float(channel.actual_total_sales))))
actual_roi_rows.append(decimal_formater(
format_numbers((channel.actual_total_sales) / (channel.actual_total_spends * channel.conversion_rate),
include_indicator=False, n_decimals=4), n_decimals=4))
actual_summary_df = pd.DataFrame([summary_columns, actual_spends_rows, actual_sales_rows, actual_roi_rows]).T
actual_summary_df.columns = ['Channel', 'Spends', 'Prospects', 'ROI']
actual_summary_df['Prospects'] = actual_summary_df['Prospects'].map(lambda x: str(x)[1:])
return actual_summary_df
# def create_channel_summary(scenario):
#
# # Provided data
# data = {
# 'Channel': ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer'],
# 'Spends': ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'],
# 'Revenue': ['558.0K', '3.5M', '5.2M', '3.1M', '3.1M', '2.1M', '20.8M', '1.6M', '728.4K', '22.9M', '4.8M']
# }
#
# # Create DataFrame
# df = pd.DataFrame(data)
#
# # Convert currency strings to numeric values
# df['Spends'] = df['Spends'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
# df['Revenue'] = df['Revenue'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
#
# # Calculate ROI
# df['ROI'] = ((df['Revenue'] - df['Spends']) / df['Spends'])
#
# # Format columns
# format_currency = lambda x: f"${x:,.1f}"
# format_roi = lambda x: f"{x:.1f}"
#
# df['Spends'] = ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K']
# df['Revenue'] = ['$ 536.3K', '$ 3.4M', '$ 5M', '$ 3M', '$ 3M', '$ 2M', '$ 20M', '$ 1.5M', '$ 7.1M', '$ 22M', '$ 4.6M']
# df['ROI'] = df['ROI'].apply(format_roi)
#
# return df
#@st.cache_data()
def create_contribution_pie(scenario):
#c1f7dc
light_blue = 'rgba(0, 31, 120, 0.7)'
light_orange = 'rgba(0, 181, 219, 0.7)'
light_green = 'rgba(240, 61, 20, 0.7)'
light_red = 'rgba(250, 110, 10, 0.7)'
light_purple = 'rgba(255, 191, 69, 0.7)'
colors_map = {col:color for col,color in zip(st.session_state['channels_list'],plotly.colors.n_colors(plotly.colors.hex_to_rgb('#BE6468'), plotly.colors.hex_to_rgb('#E7B8B7'),23))}
total_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Media Spends','Prospects Contribution'],specs=[[{"type": "pie"}, {"type": "pie"}]])
total_contribution_fig.add_trace(
go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
values= [round(scenario.channels[channel_name].actual_total_spends * scenario.channels[channel_name].conversion_rate,1) for channel_name in st.session_state['channels_list']] + [0],
marker_colors=[light_blue, light_orange, light_green, light_red, light_purple],
hole=0.3),
row=1, col=1)
total_contribution_fig.add_trace(
go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
values= [scenario.channels[channel_name].actual_total_sales for channel_name in st.session_state['channels_list']] + [scenario.correction.sum() + scenario.constant.sum()],
hole=0.3),
row=1, col=2)
total_contribution_fig.update_traces(textposition='inside',texttemplate='%{percent:.1%}')
total_contribution_fig.update_layout(uniformtext_minsize=12,title='', uniformtext_mode='hide')
return total_contribution_fig
#@st.cache_data()
# def create_contribuion_stacked_plot(scenario):
# weekly_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "bar"}, {"type": "bar"}]])
# raw_df = st.session_state['raw_df']
# df = raw_df.sort_values(by='Date')
# x = df.Date
# weekly_spends_data = []
# weekly_sales_data = []
# for channel_name in st.session_state['channels_list']:
# weekly_spends_data.append((go.Bar(x=x,
# y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
# name=channel_name_formating(channel_name),
# hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
# legendgroup=channel_name)))
# weekly_sales_data.append((go.Bar(x=x,
# y=scenario.channels[channel_name].actual_sales,
# name=channel_name_formating(channel_name),
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
# legendgroup=channel_name, showlegend=False)))
# for _d in weekly_spends_data:
# weekly_contribution_fig.add_trace(_d, row=1, col=1)
# for _d in weekly_sales_data:
# weekly_contribution_fig.add_trace(_d, row=1, col=2)
# weekly_contribution_fig.add_trace(go.Bar(x=x,
# y=scenario.constant + scenario.correction,
# name='Non Media',
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), row=1, col=2)
# weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribuion by week', xaxis_title='Date')
# weekly_contribution_fig.update_xaxes(showgrid=False)
# weekly_contribution_fig.update_yaxes(showgrid=False)
# return weekly_contribution_fig
# @st.cache_data(allow_output_mutation=True)
# def create_channel_spends_sales_plot(channel):
# if channel is not None:
# x = channel.dates
# _spends = channel.actual_spends * channel.conversion_rate
# _sales = channel.actual_sales
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
# channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#005b96'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
# channel_sales_spends_fig.update_xaxes(showgrid=False)
# channel_sales_spends_fig.update_yaxes(showgrid=False)
# else:
# raw_df = st.session_state['raw_df']
# df = raw_df.sort_values(by='Date')
# x = df.Date
# scenario = class_from_dict(st.session_state['default_scenario_dict'])
# _sales = scenario.constant + scenario.correction
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
# # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#15C39A'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
# channel_sales_spends_fig.update_xaxes(showgrid=False)
# channel_sales_spends_fig.update_yaxes(showgrid=False)
# return channel_sales_spends_fig
# Define a shared color palette
# def create_contribution_pie():
# color_palette = ['#F3F3F0', '#5E7D7E', '#2FA1FF', '#00EDED', '#00EAE4', '#304550', '#EDEBEB', '#7FBEFD', '#003059', '#A2F3F3', '#E1D6E2', '#B6B6B6']
# total_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "pie"}, {"type": "pie"}]])
#
# channels_list = ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer', 'Non Media']
#
# # Assign colors from the limited palette to channels
# colors_map = {col: color_palette[i % len(color_palette)] for i, col in enumerate(channels_list)}
# colors_map['Non Media'] = color_palette[5] # Assign fixed green color for 'Non Media'
#
# # Hardcoded values for Spends and Revenue
# spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0]
# revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16]
#
# # Add trace for Spends pie chart
# total_contribution_fig.add_trace(
# go.Pie(
# labels=[channel_name for channel_name in channels_list],
# values=spends_values,
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
# hole=0.3
# ),
# row=1, col=1
# )
#
# # Add trace for Revenue pie chart
# total_contribution_fig.add_trace(
# go.Pie(
# labels=[channel_name for channel_name in channels_list],
# values=revenue_values,
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
# hole=0.3
# ),
# row=1, col=2
# )
#
# total_contribution_fig.update_traces(textposition='inside', texttemplate='%{percent:.1%}')
# total_contribution_fig.update_layout(uniformtext_minsize=12, title='Channel contribution', uniformtext_mode='hide')
# return total_contribution_fig
def create_contribuion_stacked_plot(scenario):
weekly_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Prospects'], specs=[[{"type": "bar"}, {"type": "bar"}]])
raw_df = st.session_state['raw_df']
df = raw_df.sort_values(by='Date')
x = df.Date
weekly_spends_data = []
weekly_sales_data = []
for i, channel_name in enumerate(st.session_state['channels_list']):
color = color_palette[i % len(color_palette)]
weekly_spends_data.append(go.Bar(
x=x,
y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
name=channel_name_formating(channel_name),
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
legendgroup=channel_name,
marker_color=color,
))
weekly_sales_data.append(go.Bar(
x=x,
y=scenario.channels[channel_name].actual_sales,
name=channel_name_formating(channel_name),
hovertemplate="Date:%{x}<br>Prospects:%{y:$.2s}",
legendgroup=channel_name,
showlegend=False,
marker_color=color,
))
for _d in weekly_spends_data:
weekly_contribution_fig.add_trace(_d, row=1, col=1)
for _d in weekly_sales_data:
weekly_contribution_fig.add_trace(_d, row=1, col=2)
weekly_contribution_fig.add_trace(go.Bar(
x=x,
y=scenario.constant + scenario.correction,
name='Non Media',
hovertemplate="Date:%{x}<br>Prospects:%{y:$.2s}",
marker_color=color_palette[-1],
), row=1, col=2)
weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribution by week', xaxis_title='Date')
weekly_contribution_fig.update_xaxes(showgrid=False)
weekly_contribution_fig.update_yaxes(showgrid=False)
return weekly_contribution_fig
def create_channel_spends_sales_plot(channel):
if channel is not None:
x = channel.dates
_spends = channel.actual_spends * channel.conversion_rate
_sales = channel.actual_sales
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
channel_sales_spends_fig.add_trace(go.Bar(
x=x,
y=_sales,
marker_color=color_palette[1], # You can choose a color from the palette
name='Prospects',
hovertemplate="Date:%{x}<br>Prospects:%{y:$.2s}",
), secondary_y=False)
channel_sales_spends_fig.add_trace(go.Scatter(
x=x,
y=_spends,
line=dict(color=color_palette[3]), # You can choose another color from the palette
name='Spends',
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
), secondary_y=True)
channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Prospects', yaxis2_title='Spends ($)', title='Channel spends and Prospects week-wise')
channel_sales_spends_fig.update_xaxes(showgrid=False)
channel_sales_spends_fig.update_yaxes(showgrid=False)
else:
raw_df = st.session_state['raw_df']
df = raw_df.sort_values(by='Date')
x = df.Date
scenario = class_from_dict(st.session_state['default_scenario_dict'])
_sales = scenario.constant + scenario.correction
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
channel_sales_spends_fig.add_trace(go.Bar(
x=x,
y=_sales,
marker_color=color_palette[0], # You can choose a color from the palette
name='Prospects',
hovertemplate="Date:%{x}<br>Prospects:%{y:$.2s}",
), secondary_y=False)
channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Prospects', yaxis2_title='Spends ($)', title='Channel spends and Prospects week-wise')
channel_sales_spends_fig.update_xaxes(showgrid=False)
channel_sales_spends_fig.update_yaxes(showgrid=False)
return channel_sales_spends_fig
def format_numbers(value, n_decimals=1,include_indicator = True):
if include_indicator:
return f'{CURRENCY_INDICATOR} {numerize(value,n_decimals)}'
else:
return f'{numerize(value,n_decimals)}'
def decimal_formater(num_string,n_decimals=1):
parts = num_string.split('.')
if len(parts) == 1:
return num_string+'.' + '0'*n_decimals
else:
to_be_padded = n_decimals - len(parts[-1])
if to_be_padded > 0 :
return num_string+'0'*to_be_padded
else:
return num_string
def channel_name_formating(channel_name):
name_mod = channel_name.replace('_', ' ')
if name_mod.lower().endswith(' imp'):
name_mod = name_mod.replace('Imp','Spend')
elif name_mod.lower().endswith(' clicks'):
name_mod = name_mod.replace('Clicks','Spend')
return name_mod
def send_email(email,message):
s = smtplib.SMTP('smtp.gmail.com', 587)
s.starttls()
s.login("[email protected]", "jgydhpfusuremcol")
s.sendmail("[email protected]", email, message)
s.quit()
if __name__ == "__main__":
initialize_data()
|