Spaces:
Sleeping
Sleeping
File size: 30,675 Bytes
85d2c7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from sklearn.preprocessing import MinMaxScaler
import warnings
import warnings
warnings.filterwarnings("ignore")
import os
import plotly.graph_objects as go
from datetime import datetime,timedelta
from plotly.subplots import make_subplots
import pandas as pd
import json
# working_directory = r"C:\Users\PragyaJatav\Downloads\Deliverables\Deliverables\Response Curves 09_07_24\Response Curves Resources"
# os.chdir(working_directory)
## reading input data
df= pd.read_csv('response_curves_input_file.csv')
df.dropna(inplace=True)
df['Date'] = pd.to_datetime(df['Date'])
df.reset_index(inplace=True)
# df
spend_cols = ['tv_broadcast_spend',
'tv_cable_spend',
'stream_video_spend',
'olv_spend',
'disp_prospect_spend',
'disp_retarget_spend',
'social_prospect_spend',
'social_retarget_spend',
'search_brand_spend',
'search_nonbrand_spend',
'cm_spend',
'audio_spend',
'email_spend']
metric_cols = ['tv_broadcast_grp',
'tv_cable_grp',
'stream_video_imp',
'olv_imp',
'disp_prospect_imp',
'disp_retarget_imp',
'social_prospect_imp',
'social_retarget_imp',
'search_brand_imp',
'search_nonbrand_imp',
'cm_spend',
'audio_imp',
'email_imp']
channels = [
'BROADCAST TV',
'CABLE TV',
'CONNECTED & OTT TV',
'VIDEO',
'DISPLAY PROSPECTING',
'DISPLAY RETARGETING',
'SOCIAL PROSPECTING',
'SOCIAL RETARGETING',
'SEARCH BRAND',
'SEARCH NON-BRAND',
'DIGITAL PARTNERS',
'AUDIO',
'EMAIL']
contribution_cols = [
'Broadcast TV_Prospects',
'Cable TV_Prospects',
'Connected & OTT TV_Prospects',
'Video_Prospects',
'Display Prospecting_Prospects',
'Display Retargeting_Prospects',
'Social Prospecting_Prospects',
'Social Retargeting_Prospects',
'Search Brand_Prospects',
'Search Non-brand_Prospects',
'Digital Partners_Prospects',
'Audio_Prospects',
'Email_Prospects']
def pie1(start_date,end_date):
start_date = pd.to_datetime(start_date)
end_date = pd.to_datetime(end_date)
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
data = cur_data[spend_cols].sum().transpose()
data.index = channels
data.columns = ["p"]
# Create a pie chart with custom options
fig = go.Figure(data=[go.Pie(
labels=channels,
values=data["p"],
hoverinfo='label+percent',
# textinfo='value',
)])
# Customize the layout
fig.update_layout(
title="Distribution of Spends"
)
# Show the figure
return data
def waterfall(start_date,end_date,btn_chart):
# if pd.isnull(start_date) == True :
# start_date = datetime(2024, 1, 28)
# if pd.isnull(end_date) == True :
# end_date = datetime(2024, 2, 24)
# start_date = datetime.strptime(start_date, "%Y-%m-%d")
# end_date = datetime.strptime(end_date, "%Y-%m-%d")
# start_date = start_date.datetime.data
# end_date = end_date.datetime.data
start_date = pd.to_datetime(start_date)
end_date = pd.to_datetime(end_date)
if btn_chart == "Month on Month":
start_date_prev = start_date +timedelta(weeks=-4)
end_date_prev = start_date +timedelta(days=-1)
else:
start_date_prev = start_date +timedelta(weeks=-52)
end_date_prev = start_date_prev +timedelta(weeks=4) +timedelta(days=-1)
prev_data = df[(df['Date'] >= start_date_prev) & (df['Date'] <= end_date_prev)]
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
# Example data for the waterfall chart
data = [
{'label': 'Previous Period', 'value': round(prev_data[contribution_cols].values.sum())},
{'label': 'Broadcast TV', 'value': round(cur_data['Broadcast TV_Prospects'].sum()-prev_data['Broadcast TV_Prospects'].sum())},
{'label': 'Cable TV', 'value': round(cur_data['Cable TV_Prospects'].sum()-prev_data['Cable TV_Prospects'].sum())},
{'label': 'Connected & OTT TV', 'value': round(cur_data['Connected & OTT TV_Prospects'].sum()-prev_data['Connected & OTT TV_Prospects'].sum())},
{'label': 'Video', 'value': round(cur_data['Video_Prospects'].sum()-prev_data['Video_Prospects'].sum())},
{'label': 'Display Prospecting', 'value': round(cur_data['Display Prospecting_Prospects'].sum()-prev_data['Display Prospecting_Prospects'].sum())},
{'label': 'Display Retargeting', 'value': round(cur_data['Display Retargeting_Prospects'].sum()-prev_data['Display Retargeting_Prospects'].sum())},
{'label': 'Social Prospecting', 'value': round(cur_data['Social Prospecting_Prospects'].sum()-prev_data['Social Prospecting_Prospects'].sum())},
{'label': 'Social Retargeting', 'value': round(cur_data['Social Retargeting_Prospects'].sum()-prev_data['Social Retargeting_Prospects'].sum())},
{'label': 'Search Brand', 'value': round(cur_data['Search Brand_Prospects'].sum()-prev_data['Search Brand_Prospects'].sum())},
{'label': 'Search Non-brand', 'value': round(cur_data['Search Non-brand_Prospects'].sum()-prev_data['Search Non-brand_Prospects'].sum())},
{'label': 'Digital Partners', 'value': round(cur_data['Digital Partners_Prospects'].sum()-prev_data['Digital Partners_Prospects'].sum())},
{'label': 'Audio', 'value': round(cur_data['Audio_Prospects'].sum()-prev_data['Audio_Prospects'].sum())},
{'label': 'Email', 'value': round(cur_data['Email_Prospects'].sum()-prev_data['Email_Prospects'].sum())},
{'label': 'Current Period', 'value': round(cur_data[contribution_cols].values.sum())}
]
# Calculate cumulative values for the waterfall chart
cumulative = [0]
for i in range(len(data)):
cumulative.append(cumulative[-1] + data[i]['value'])
# Adjusting values to start from zero for both first and last columns
cumulative[-1] = 0 # Set the last cumulative value to zero
# Extracting labels and values
labels = [item['label'] for item in data]
values = [item['value'] for item in data]
# Plotting the waterfall chart using go.Bar
bars = []
for i in range(len(data)):
color = '#4A88D9' if i == 0 or i == len(data) - 1 else '#DC5537' # Blue for first and last, gray for others
hover_text = f"<b>{labels[i]}</b><br>Value: {abs(values[i])}"
bars.append(go.Bar(
x=[labels[i]],
y=[cumulative[i+1] - cumulative[i]],
base=[cumulative[i]],
text=[f"{abs(values[i])}"],
textposition='outside',
hovertemplate=hover_text,
marker=dict(color=color),
showlegend=False
))
# Creating the figure
fig = go.Figure(data=bars)
# Updating layout for black background and gray gridlines
if btn_chart == "Month on Month":
fig.update_layout(
title=f"Change in MMM Estimated Prospect Contribution <br>{start_date_prev.strftime('%Y-%m-%d')} to {end_date_prev.strftime('%Y-%m-%d')} vs. {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}"
,showlegend=False,
# plot_bgcolor='black',
# paper_bgcolor='black',
# font=dict(color='white'), # Changing font color to white for better contrast
xaxis=dict(
showgrid=False,
zeroline=False, # Hiding the x-axis zero line
),
yaxis=dict(
title="Prospects",
showgrid=True,
gridcolor='gray', # Setting y-axis gridline color to gray
zeroline=False, # Hiding the y-axis zero line
range=[18000, max(cumulative)+1000] # Setting the y-axis range from 19k to slightly above the maximum value
)
)
else :
fig.update_layout(
title=f"Change in MMM Estimated Prospect Contribution <br>{start_date_prev.strftime('%Y-%m-%d')} to {end_date_prev.strftime('%Y-%m-%d')} vs. {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}"
,showlegend=False,
# plot_bgcolor='black',
# paper_bgcolor='black',
# font=dict(color='white'), # Changing font color to white for better contrast
xaxis=dict(
showgrid=False,
zeroline=False, # Hiding the x-axis zero line
),
yaxis=dict(
title="Prospects",
showgrid=True,
gridcolor='gray', # Setting y-axis gridline color to gray
zeroline=False, # Hiding the y-axis zero line
range=[10000, max(cumulative)+1000] # Setting the y-axis range from 19k to slightly above the maximum value
)
)
# print(cur_data)
# print(prev_data)
# fig.show()
return fig
def shares_df_func(start_date,end_date):
# if pd.isnull(start_date) == True :
# start_date = datetime(2024, 1, 28)
# if pd.isnull(end_date) == True :
# end_date = datetime(2024, 2, 24)
start_date = pd.to_datetime(start_date)
end_date = pd.to_datetime(end_date)
start_date_prev = start_date +timedelta(weeks=-4)
end_date_prev = start_date +timedelta(days=-1)
prev_data = df[(df['Date'] >= start_date_prev) & (df['Date'] <= end_date_prev)]
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
cur_df1 = pd.DataFrame(cur_data[spend_cols].sum()).reset_index()
cur_df2 = pd.DataFrame(cur_data[metric_cols].sum()).reset_index()
cur_df3 = pd.DataFrame(cur_data[contribution_cols].sum()).reset_index()
cur_df1.columns = ["channels","cur_total_spend"]
cur_df2.columns = ["channels","cur_total_support"]
cur_df3.columns = ["channels","cur_total_contributions"]
cur_df1["channels"] = channels
cur_df2["channels"] = channels
cur_df3["channels"] = channels
cur_df1["cur_spend_share"] = (cur_df1["cur_total_spend"]/cur_df1["cur_total_spend"].sum())*100
cur_df2["cur_support_share"] = (cur_df2["cur_total_support"]/cur_df2["cur_total_support"].sum())*100
cur_df3["cur_contributions_share"] = (cur_df3["cur_total_contributions"]/cur_df3["cur_total_contributions"].sum())*100
prev_df1 = pd.DataFrame(prev_data[spend_cols].sum()).reset_index()
prev_df2 = pd.DataFrame(prev_data[metric_cols].sum()).reset_index()
prev_df3 = pd.DataFrame(prev_data[contribution_cols].sum()).reset_index()
prev_df1.columns = ["channels","prev_total_spend"]
prev_df2.columns = ["channels","prev_total_support"]
prev_df3.columns = ["channels","prev_total_contributions"]
prev_df1["channels"] = channels
prev_df2["channels"] = channels
prev_df3["channels"] = channels
prev_df1["prev_spend_share"] = (prev_df1["prev_total_spend"]/prev_df1["prev_total_spend"].sum())*100
prev_df2["prev_support_share"] = (prev_df2["prev_total_support"]/prev_df2["prev_total_support"].sum())*100
prev_df3["prev_contributions_share"] = (prev_df3["prev_total_contributions"]/prev_df3["prev_total_contributions"].sum())*100
cur_df = cur_df1.merge(cur_df2,on="channels",how = "inner")
cur_df = cur_df.merge(cur_df3,on="channels",how = "inner")
prev_df = prev_df1.merge(prev_df2,on="channels",how = "inner")
prev_df = prev_df.merge(prev_df3,on="channels",how = "inner")
shares_df = cur_df.merge(prev_df,on = "channels",how = "inner")
shares_df["Contribution Change"] = (-shares_df["prev_contributions_share"]+shares_df["cur_contributions_share"])/shares_df["prev_contributions_share"]
shares_df["Support Change"] = (-shares_df["prev_support_share"]+shares_df["cur_support_share"])/shares_df["prev_support_share"]
shares_df["Spend Change"] = (-shares_df["prev_spend_share"]+shares_df["cur_spend_share"])/shares_df["prev_spend_share"]
shares_df["Efficiency Index"] = shares_df["cur_contributions_share"]/shares_df["cur_spend_share"]
shares_df["Effectiveness Index"] = shares_df["cur_support_share"]/shares_df["cur_spend_share"]
return shares_df
def waterfall_table_func(shares_df):
### waterfall delta table
# if pd.isnull(start_date) == True :
# start_date = datetime(2024, 1, 28)
# if pd.isnull(end_date) == True :
# end_date = datetime(2024, 2, 24)
waterfall_delta_df = shares_df[["channels","Contribution Change","Support Change","Spend Change"]]
waterfall_delta_df = waterfall_delta_df.rename(columns = {"channels":"METRIC"})
waterfall_delta_df.index = waterfall_delta_df["METRIC"]
waterfall_delta_df = waterfall_delta_df.round(2)
return (waterfall_delta_df[["Contribution Change","Support Change","Spend Change"]].transpose())
def channel_contribution(start_date,end_date):
# if pd.isnull(start_date) == True :
# start_date = datetime(2024, 1, 28)
# if pd.isnull(end_date) == True :
# end_date = datetime(2024, 2, 24)
start_date = pd.to_datetime(start_date)
end_date = pd.to_datetime(end_date)
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
channel_df = pd.DataFrame(cur_data[contribution_cols].sum()).reset_index()
channel_df.columns = ["channels","contributions"]
channel_df["channels"] = channels
# Creating the bar chart
fig = go.Figure(data=[go.Bar(
x=channel_df['channels'],
y=round(channel_df['contributions']),
marker=dict(color='rgb(74, 136, 217)'), # Blue color for all bars
text=round(channel_df['contributions']),
textposition='outside'
)])
# Updating layout for better visualization
fig.update_layout(
title=f"Media Contribution <br> {cur_data['Date'].min().strftime('%Y-%m-%d')} to {cur_data['Date'].max().strftime('%Y-%m-%d')}",
# plot_bgcolor='black',
# paper_bgcolor='black',
# font=dict(color='white'), # Changing font color to white for better contrast
xaxis=dict(
showgrid=False,
gridcolor='gray', # Setting x-axis gridline color to gray
zeroline=False, # Hiding the x-axis zero line
),
yaxis=dict(
title="Prospect",
showgrid=True,
gridcolor='gray', # Setting y-axis gridline color to gray
zeroline=False, # Hiding the y-axis zero line
)
)
return fig
def shares_table_func(shares_df):
# if pd.isnull(start_date) == True :
# start_date = datetime(2024, 1, 28)
# if pd.isnull(end_date) == True :
# end_date = datetime(2024, 2, 24)
### Shares tables
shares_table_df = shares_df[["channels","cur_spend_share","cur_support_share","cur_contributions_share","Efficiency Index","Effectiveness Index"]]
shares_table_df = shares_table_df.rename(columns = {"channels":"METRIC",
"cur_spend_share":"Spend Share",
"cur_support_share":"Support Share",
"cur_contributions_share":"Contribution Share"})
shares_table_df.index = shares_table_df["METRIC"]
for c in ["Spend Share","Support Share","Contribution Share"]:
shares_table_df[c] = shares_table_df[c].astype(int)
shares_table_df[c] = shares_table_df[c].astype(str)+'%'
for c in ["Efficiency Index","Effectiveness Index"]:
shares_table_df[c] = shares_table_df[c].round(2).astype(str)
shares_table_df = shares_table_df[["Spend Share","Support Share","Contribution Share","Efficiency Index","Effectiveness Index"]].transpose()
return (shares_table_df)
def eff_table_func(shares_df):
# if pd.isnull(start_date) == True :
# start_date = datetime(2024, 1, 28)
# if pd.isnull(end_date) == True :
# end_date = datetime(2024, 2, 24)
media_df = shares_df[['channels', 'cur_total_spend',"cur_total_support", "cur_total_contributions" ,'cur_spend_share',
'cur_support_share', 'cur_contributions_share', 'Efficiency Index', 'Effectiveness Index']]
media_df = media_df.rename(columns = {"channels":"MEDIA",
"cur_total_spend":"TOTAL SPEND",
"cur_total_support":"TOTAL SUPPORT",
"cur_total_contributions":"TOTAL CONTRIBUTION",
"cur_spend_share":"SPEND SHARE",
"cur_support_share":"SUPPORT SHARE",
"cur_contributions_share":"CONTRIBUTION SHARE",
'Efficiency Index':'EFFICIENCY INDEX',
'Effectiveness Index' :'EFFECTIVENESS INDEX'
})
media_df.index = media_df["MEDIA"]
media_df.drop(columns = ["MEDIA"],inplace = True)
for c in ["TOTAL SPEND","TOTAL SUPPORT","TOTAL CONTRIBUTION"]:
media_df[c] = media_df[c].astype(int).astype(str)
for c in ["SPEND SHARE","SUPPORT SHARE","CONTRIBUTION SHARE"]:
media_df[c] = media_df[c].astype(int)
media_df[c] = media_df[c].astype(str)+'%'
for c in ['EFFICIENCY INDEX','EFFECTIVENESS INDEX']:
media_df[c] = media_df[c].round(2).astype(str)
return (media_df)
def cpp(start_date,end_date):
# if pd.isnull(start_date) == True :
# start_date = datetime(2024, 1, 28)
# if pd.isnull(end_date) == True :
# end_date = datetime(2024, 2, 24)
start_date = pd.to_datetime(start_date)
end_date = pd.to_datetime(end_date)
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
fig = go.Figure()
colors = [
'rgba(74, 136, 217, 0.8)', # Blue
'rgba(220, 85, 55, 0.8)', # Red
'rgba(67, 150, 80, 0.8)', # Green
'rgba(237, 151, 35, 0.8)', # Orange
'rgba(145, 68, 255, 0.8)', # Purple
'rgba(128, 128, 128, 0.8)', # Gray
'rgba(255, 165, 0, 0.8)', # Amber
'rgba(255, 192, 203, 0.8)', # Pink
'rgba(0, 191, 255, 0.8)', # Deep Sky Blue
'rgba(127, 255, 0, 0.8)', # Chartreuse
'rgba(255, 69, 0, 0.8)', # Red-Orange
'rgba(75, 0, 130, 0.8)', # Indigo
'rgba(240, 230, 140, 0.8)', # Khaki
'rgba(218, 112, 214, 0.8)'
]
for i in range(0,13):
cpp_df = cur_data[['Date',spend_cols[i],contribution_cols[i]]]
cpp_df[channels[i]+"_cpp"] = cpp_df[spend_cols[i]]/cpp_df[contribution_cols[i]]
# Add each line trace
fig.add_trace(go.Scatter(x=cpp_df['Date'], y=cpp_df[channels[i]+"_cpp"], mode='lines', name=channels[i]))
# Update layout for better visualization
fig.update_layout(
title=f"CPP distribution <br>{cur_data['Date'].min().strftime('%Y-%m-%d')} to {cur_data['Date'].max().strftime('%Y-%m-%d')}"
,
# plot_bgcolor='black',
# paper_bgcolor='black',
# font=dict(color='white'), # Changing font color to white for better contrast
xaxis=dict(
showgrid=True,
gridcolor='gray', # Setting x-axis gridline color to gray
zeroline=False, # Hiding the x-axis zero line
),
yaxis=dict(
title="CPP",
showgrid=True,
gridcolor='gray', # Setting y-axis gridline color to gray
zeroline=False, # Hiding the y-axis zero line
),
hovermode='x' # Show hover info for all lines at a single point
)
return fig
def base_decomp():
# if pd.isnull(start_date) == True :
# start_date = datetime(2024, 1, 28)
# if pd.isnull(end_date) == True :
# end_date = datetime(2024, 2, 24)
base_decomp_df = df[['Date','Unemployment', 'Competition','Trend','Seasonality','Base_0']]
fig = go.Figure()
# Add each line trace
fig.add_trace(go.Scatter(x=base_decomp_df['Date'], y=base_decomp_df['Base_0'], mode='lines', name='Trend and Seasonality'))
fig.add_trace(go.Scatter(x=base_decomp_df['Date'], y=base_decomp_df['Unemployment'], mode='lines', name='Unemployment'))
fig.add_trace(go.Scatter(x=base_decomp_df['Date'], y=base_decomp_df['Competition'], mode='lines', name='Competition'))
# Update layout for better visualization
fig.update_layout(
title=f"Base decomposition"
# <br>{cur_data['Date'].min().strftime('%Y-%m-%d')} to {cur_data['Date'].max().strftime('%Y-%m-%d')}"
,
# plot_bgcolor='black',
# paper_bgcolor='black',
# font=dict(color='white'), # Changing font color to white for better contrast
xaxis=dict(
showgrid=False,
gridcolor='gray', # Setting x-axis gridline color to gray
zeroline=True, # Hiding the x-axis zero line
),
yaxis=dict(
title="Prospect",
showgrid=True,
gridcolor='gray', # Setting y-axis gridline color to gray
zeroline=False, # Hiding the y-axis zero line
),
hovermode='x' # Show hover info for all lines at a single point
)
return fig
def media_decomp():
# if pd.isnull(start_date) == True :
# start_date = datetime(2024, 1, 28)
# if pd.isnull(end_date) == True :
# end_date = datetime(2024, 2, 24)
df['base'] = df[ 'Base_0']+df['Unemployment']+df['Competition']
cols = ['Date',
'base',
'Broadcast TV_Prospects',
'Cable TV_Prospects',
'Connected & OTT TV_Prospects',
'Video_Prospects',
'Display Prospecting_Prospects',
'Display Retargeting_Prospects',
'Social Prospecting_Prospects',
'Social Retargeting_Prospects',
'Search Brand_Prospects',
'Search Non-brand_Prospects',
'Digital Partners_Prospects',
'Audio_Prospects',
'Email_Prospects',
]
media_decomp_df = df[cols]
# Calculating the cumulative sum for stacking
cumulative_df = media_decomp_df.copy()
# for channel in media_decomp_df.columns[1:]:
# cumulative_df[channel] = cumulative_df[channel] + cumulative_df[channel].shift(1, fill_value=0)
media_cols = media_decomp_df.columns
for i in range(2,len(media_cols)):
# print(media_cols[i])
cumulative_df[media_cols[i]] = cumulative_df[media_cols[i]] + cumulative_df[media_cols[i-1]]
# cumulative_df
# Creating the stacked area chart
fig = go.Figure()
colors =colors = [
'rgba(74, 136, 217, 0.8)', # Blue
'rgba(220, 85, 55, 0.8)', # Red
'rgba(67, 150, 80, 0.8)', # Green
'rgba(237, 151, 35, 0.8)', # Orange
'rgba(145, 68, 255, 0.8)', # Purple
'rgba(128, 128, 128, 0.8)', # Gray
'rgba(255, 165, 0, 0.8)', # Amber
'rgba(255, 192, 203, 0.8)', # Pink
'rgba(0, 191, 255, 0.8)', # Deep Sky Blue
'rgba(127, 255, 0, 0.8)', # Chartreuse
'rgba(255, 69, 0, 0.8)', # Red-Orange
'rgba(75, 0, 130, 0.8)', # Indigo
'rgba(240, 230, 140, 0.8)', # Khaki
'rgba(218, 112, 214, 0.8)'
]
for idx, channel in enumerate(media_decomp_df.columns[1:]):
fig.add_trace(go.Scatter(
x=media_decomp_df['Date'],
y=cumulative_df[channel],
fill='tonexty' if idx > 0 else 'tozeroy', # Fill to the previous curve
mode='none',
name=str.split(channel,'_')[0],
text=media_decomp_df[channel], # Adding text for each point
hoverinfo='x+y+text',
fillcolor=colors[idx] # Different color for each channel
))
# Updating layout for better visualization
fig.update_layout(
title=f"Media decomposition",# <br>{cur_data['Date'].min().strftime('%Y-%m-%d')} to {cur_data['Date'].max().strftime('%Y-%m-%d')}",
# plot_bgcolor='black',
# paper_bgcolor='black',
# font=dict(color='white'), # Changing font color to white for better contrast
xaxis=dict(
showgrid=False,
gridcolor='gray', # Setting x-axis gridline color to gray
zeroline=False, # Hiding the x-axis zero line
),
yaxis=dict(
title="Prospect",
showgrid=True,
gridcolor='gray', # Setting y-axis gridline color to gray
zeroline=False, # Hiding the y-axis zero line
)
)
return fig
def mmm_model_quality():
base_df = df[['Date',"Y_hat","Y"]]
fig = go.Figure()
# Add each line trace
fig.add_trace(go.Scatter(x=base_df['Date'], y=base_df['Y_hat'], mode='lines', name='Predicted'))
fig.add_trace(go.Scatter(x=base_df['Date'], y=base_df['Y'], mode='lines', name='Actual (Prospect)'))
# Update layout for better visualization
fig.update_layout(
title=f"MMM Model Quality"
,
# plot_bgcolor='black',
# paper_bgcolor='black',
# font=dict(color='white'), # Changing font color to white for better contrast
xaxis=dict(
showgrid=False,
gridcolor='gray', # Setting x-axis gridline color to gray
zeroline=False, # Hiding the x-axis zero line
),
yaxis=dict(
title="Prospects",
showgrid=True,
gridcolor='gray', # Setting y-axis gridline color to gray
zeroline=False, # Hiding the y-axis zero line
),
hovermode='x' # Show hover info for all lines at a single point
)
return(fig)
def media_data():
# Path to your JSON file
json_file_path = "all_solutions_2024-05-09.json"
# Read the JSON file
with open(json_file_path, 'r') as file:
json_data = json.load(file)
# Initialize a list to store the extracted data
extracted_data = []
# Extract half_life and coeff from media_params
for params_type in ["control_params","other_params","media_params"]:
for media, params in json_data['solution_0']['solution'][params_type].items():
try:
extracted_data.append({
'category': media,# str.split(params_type,'_')[0],
'half_life': params['half_life'],
'coeff': params['coeff']
})
except:
extracted_data.append({
'category':media,# str.split(params_type,'_')[0],
'half_life': None,
'coeff': params['coeff']
})
media_df = pd.DataFrame(extracted_data)
return media_df
def elasticity(media_df):
fig = go.Figure()
# media_df = media_df[["category","coeff"]]
fig.add_trace(go.Bar(
x=media_df['coeff'],
y=media_df['category'],
orientation='h', # Setting the orientation to horizontal
marker_color='rgba(75, 136, 257, 1)' # Color for the bars
))
# Updating layout for better visualization
fig.update_layout(
title="Media and Baseline Elasticity",
xaxis=dict(
title="Elasticity (coefficient)",
showgrid=True,
gridcolor='gray', # Setting x-axis gridline color to gray
zeroline=False, # Hiding the x-axis zero line
),
yaxis=dict(
showgrid=False,
gridcolor='gray', # Setting y-axis gridline color to gray
zeroline=False, # Hiding the y-axis zero line
),
# plot_bgcolor='black',
# paper_bgcolor='black',
# font=dict(color='lightgray') # Changing font color to white for better contrast
)
return fig
def half_life(media_df):
fig = go.Figure()
# media_df = media_df[["category","coeff"]]
fig.add_trace(go.Bar(
x=media_df[media_df['half_life'].isnull()==False]['half_life'],
y=media_df[media_df['half_life'].isnull()==False]['category'],
orientation='h', # Setting the orientation to horizontal
marker_color='rgba(75, 136, 257, 1)' # Color for the bars
))
# Updating layout for better visualization
fig.update_layout(
title="Media Half-life",
xaxis=dict(
title="Weeks",
showgrid=True,
gridcolor='gray', # Setting x-axis gridline color to gray
zeroline=False, # Hiding the x-axis zero line
),
yaxis=dict(
showgrid=False,
gridcolor='gray', # Setting y-axis gridline color to gray
zeroline=False, # Hiding the y-axis zero line
),
# plot_bgcolor='black',
# paper_bgcolor='black',
# font=dict(color='lightgray') # Changing font color to white for better contrast
)
return fig
# media metrics table
n = 104
k = 18
def calculate_aic(y, y_hat):
n = len(y)
sse = np.sum((y - y_hat) ** 2)
aic = n * np.log(sse / n) + 2 * k
return aic
def calculate_bic(y, y_hat):
n = len(y)
sse = np.sum((y - y_hat) ** 2)
bic = n * np.log(sse / n) + k * np.log(n)
return bic
def calculate_r_squared(y, y_hat):
ss_total = np.sum((y - np.mean(y)) ** 2)
ss_residual = np.sum((y - y_hat) ** 2)
r_squared = 1 - (ss_residual / ss_total)
return r_squared
# Function to calculate Adjusted R-squared
def calculate_adjusted_r_squared(y, y_hat):
n = len(y)
r_squared = calculate_r_squared(y, y_hat)
adjusted_r_squared = 1 - ((1 - r_squared) * (n - 1) / (n - k - 1))
return adjusted_r_squared
# Function to calculate MAPE
def calculate_mape(y, y_hat):
mape = np.mean(np.abs((y - y_hat) / y)) * 100
return mape
def model_metrics_table_func():
model_metrics_df = pd.DataFrame([calculate_r_squared(df["Y"], df["Y_hat"]),
calculate_adjusted_r_squared(df["Y"], df["Y_hat"]),
calculate_mape(df["Y"], df["Y_hat"]),
calculate_aic(df["Y"], df["Y_hat"]),
calculate_bic(df["Y"], df["Y_hat"])])
model_metrics_df.index = ["R-squared","Adjusted R-squared","MAPE","AIC","BIC"]
model_metrics_df = model_metrics_df.transpose()
model_metrics_df.index = ['']
return model_metrics_df.round(2)
|