Spaces:
Running
Running
File size: 19,982 Bytes
be4456f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
import numpy as np
from scipy.optimize import minimize, LinearConstraint, NonlinearConstraint
from collections import OrderedDict
import pandas as pd
from numerize.numerize import numerize
def class_to_dict(class_instance):
attr_dict = {}
if isinstance(class_instance, Channel):
attr_dict["type"] = "Channel"
attr_dict["name"] = class_instance.name
attr_dict["dates"] = class_instance.dates
attr_dict["spends"] = class_instance.actual_spends
attr_dict["conversion_rate"] = class_instance.conversion_rate
attr_dict["modified_spends"] = class_instance.modified_spends
attr_dict["modified_sales"] = class_instance.modified_sales
attr_dict["response_curve_type"] = class_instance.response_curve_type
attr_dict["response_curve_params"] = class_instance.response_curve_params
attr_dict["penalty"] = class_instance.penalty
attr_dict["bounds"] = class_instance.bounds
attr_dict["actual_total_spends"] = class_instance.actual_total_spends
attr_dict["actual_total_sales"] = class_instance.actual_total_sales
attr_dict["modified_total_spends"] = class_instance.modified_total_spends
attr_dict["modified_total_sales"] = class_instance.modified_total_sales
attr_dict["actual_mroi"] = class_instance.get_marginal_roi("actual")
attr_dict["modified_mroi"] = class_instance.get_marginal_roi("modified")
elif isinstance(class_instance, Scenario):
attr_dict["type"] = "Scenario"
attr_dict["name"] = class_instance.name
channels = []
for channel in class_instance.channels.values():
channels.append(class_to_dict(channel))
attr_dict["channels"] = channels
attr_dict["constant"] = class_instance.constant
attr_dict["correction"] = class_instance.correction
attr_dict["actual_total_spends"] = class_instance.actual_total_spends
attr_dict["actual_total_sales"] = class_instance.actual_total_sales
attr_dict["modified_total_spends"] = class_instance.modified_total_spends
attr_dict["modified_total_sales"] = class_instance.modified_total_sales
return attr_dict
def class_from_dict(attr_dict):
if attr_dict["type"] == "Channel":
return Channel.from_dict(attr_dict)
elif attr_dict["type"] == "Scenario":
return Scenario.from_dict(attr_dict)
class Channel:
def __init__(
self,
name,
dates,
spends,
response_curve_type,
response_curve_params,
bounds,
conversion_rate=1,
modified_spends=None,
penalty=True,
):
self.name = name
self.dates = dates
self.conversion_rate = conversion_rate
self.actual_spends = spends.copy()
if modified_spends is None:
self.modified_spends = self.actual_spends.copy()
else:
self.modified_spends = modified_spends
self.response_curve_type = response_curve_type
self.response_curve_params = response_curve_params
self.bounds = bounds
self.penalty = penalty
self.upper_limit = self.actual_spends.max() + self.actual_spends.std()
self.power = np.ceil(np.log(self.actual_spends.max()) / np.log(10)) - 3
self.actual_sales = None
self.actual_sales = self.response_curve(self.actual_spends)
self.actual_total_spends = self.actual_spends.sum()
self.actual_total_sales = self.actual_sales.sum()
self.modified_sales = self.calculate_sales()
self.modified_total_spends = self.modified_spends.sum()
self.modified_total_sales = self.modified_sales.sum()
self.delta_spends = self.modified_total_spends - self.actual_total_spends
self.delta_sales = self.modified_total_sales - self.actual_total_sales
def update_penalty(self, penalty):
self.penalty = penalty
def _modify_spends(self, spends_array, total_spends):
return spends_array * total_spends / spends_array.sum()
def modify_spends(self, total_spends):
self.modified_spends = (
self.modified_spends * total_spends / self.modified_spends.sum()
)
def calculate_sales(self):
return self.response_curve(self.modified_spends)
def response_curve(self, x):
if self.penalty:
x = np.where(
x < self.upper_limit,
x,
self.upper_limit + (x - self.upper_limit) * self.upper_limit / x,
)
if self.response_curve_type == "s-curve":
if self.power >= 0:
x = x / 10**self.power
x = x.astype("float64")
K = self.response_curve_params["K"]
b = self.response_curve_params["b"]
a = self.response_curve_params["a"]
x0 = self.response_curve_params["x0"]
sales = K / (1 + b * np.exp(-a * (x - x0)))
if self.response_curve_type == "linear":
beta = self.response_curve_params["beta"]
sales = beta * x
return sales
def get_marginal_roi(self, flag):
K = self.response_curve_params["K"]
a = self.response_curve_params["a"]
# x = self.modified_total_spends
# if self.power >= 0 :
# x = x / 10**self.power
# x = x.astype('float64')
# return K*b*a*np.exp(-a*(x-x0)) / (1 + b * np.exp(-a*(x - x0)))**2
if flag == "actual":
y = self.response_curve(self.actual_spends)
# spends_array = self.actual_spends
# total_spends = self.actual_total_spends
# total_sales = self.actual_total_sales
else:
y = self.response_curve(self.modified_spends)
# spends_array = self.modified_spends
# total_spends = self.modified_total_spends
# total_sales = self.modified_total_sales
# spends_inc_1 = self._modify_spends(spends_array, total_spends+1)
mroi = a * (y) * (1 - y / K)
return mroi.sum() / len(self.modified_spends)
# spends_inc_1 = self.spends_array + 1
# new_total_sales = self.response_curve(spends_inc_1).sum()
# return (new_total_sales - total_sales) / len(self.modified_spends)
def update(self, total_spends):
self.modify_spends(total_spends)
self.modified_sales = self.calculate_sales()
self.modified_total_spends = self.modified_spends.sum()
self.modified_total_sales = self.modified_sales.sum()
self.delta_spends = self.modified_total_spends - self.actual_total_spends
self.delta_sales = self.modified_total_sales - self.actual_total_sales
def intialize(self):
self.new_spends = self.old_spends
def __str__(self):
return f"{self.name},{self.actual_total_sales}, {self.modified_total_spends}"
@classmethod
def from_dict(cls, attr_dict):
return Channel(
name=attr_dict["name"],
dates=attr_dict["dates"],
spends=attr_dict["spends"],
bounds=attr_dict["bounds"],
modified_spends=attr_dict["modified_spends"],
response_curve_type=attr_dict["response_curve_type"],
response_curve_params=attr_dict["response_curve_params"],
penalty=attr_dict["penalty"],
)
def update_response_curves(self, response_curve_params):
self.response_curve_params = response_curve_params
class Scenario:
def __init__(self, name, channels, constant, correction):
self.name = name
self.channels = channels
self.constant = constant
self.correction = correction
self.actual_total_spends = self.calculate_modified_total_spends()
self.actual_total_sales = self.calculate_actual_total_sales()
self.modified_total_sales = self.calculate_modified_total_sales()
self.modified_total_spends = self.calculate_modified_total_spends()
self.delta_spends = self.modified_total_spends - self.actual_total_spends
self.delta_sales = self.modified_total_sales - self.actual_total_sales
def update_penalty(self, value):
for channel in self.channels.values():
channel.update_penalty(value)
def calculate_modified_total_spends(self):
total_actual_spends = 0.0
for channel in self.channels.values():
total_actual_spends += channel.actual_total_spends * channel.conversion_rate
return total_actual_spends
def calculate_modified_total_spends(self):
total_modified_spends = 0.0
for channel in self.channels.values():
# import streamlit as st
# st.write(channel.modified_total_spends )
total_modified_spends += (
channel.modified_total_spends * channel.conversion_rate
)
return total_modified_spends
def calculate_actual_total_sales(self):
total_actual_sales = self.constant.sum() + self.correction.sum()
for channel in self.channels.values():
total_actual_sales += channel.actual_total_sales
return total_actual_sales
def calculate_modified_total_sales(self):
total_modified_sales = self.constant.sum() + self.correction.sum()
for channel in self.channels.values():
total_modified_sales += channel.modified_total_sales
return total_modified_sales
def update(self, channel_name, modified_spends):
self.channels[channel_name].update(modified_spends)
self.modified_total_sales = self.calculate_modified_total_sales()
self.modified_total_spends = self.calculate_modified_total_spends()
self.delta_spends = self.modified_total_spends - self.actual_total_spends
self.delta_sales = self.modified_total_sales - self.actual_total_sales
# def optimize_spends(self, sales_percent, channels_list, algo="COBYLA"):
# desired_sales = self.actual_total_sales * (1 + sales_percent / 100.0)
# def constraint(x):
# for ch, spends in zip(channels_list, x):
# self.update(ch, spends)
# return self.modified_total_sales - desired_sales
# bounds = []
# for ch in channels_list:
# bounds.append(
# (1 + np.array([-50.0, 100.0]) / 100.0)
# * self.channels[ch].actual_total_spends
# )
# initial_point = []
# for bound in bounds:
# initial_point.append(bound[0])
# power = np.ceil(np.log(sum(initial_point)) / np.log(10))
# constraints = [NonlinearConstraint(constraint, -1.0, 1.0)]
# res = minimize(
# lambda x: sum(x) / 10 ** (power),
# bounds=bounds,
# x0=initial_point,
# constraints=constraints,
# method=algo,
# options={"maxiter": int(2e7), "catol": 1},
# )
# for channel_name, modified_spends in zip(channels_list, res.x):
# self.update(channel_name, modified_spends)
# return zip(channels_list, res.x)
def optimize_spends(self, sales_percent, channels_list, algo="trust-constr"):
desired_sales = self.actual_total_sales * (1 + sales_percent / 100.0)
def constraint(x):
for ch, spends in zip(channels_list, x):
self.update(ch, spends)
return self.modified_total_sales - desired_sales
bounds = []
for ch in channels_list:
bounds.append(
(1 + np.array([-50.0, 100.0]) / 100.0)
* self.channels[ch].actual_total_spends
)
initial_point = []
for bound in bounds:
initial_point.append(bound[0])
power = np.ceil(np.log(sum(initial_point)) / np.log(10))
constraints = [NonlinearConstraint(constraint, -1.0, 1.0)]
res = minimize(
lambda x: sum(x) / 10 ** (power),
bounds=bounds,
x0=initial_point,
constraints=constraints,
method=algo,
options={"maxiter": int(2e7), "xtol": 100},
)
for channel_name, modified_spends in zip(channels_list, res.x):
self.update(channel_name, modified_spends)
return zip(channels_list, res.x)
def optimize(self, spends_percent, channels_list):
# channels_list = self.channels.keys()
num_channels = len(channels_list)
spends_constant = []
spends_constraint = 0.0
for channel_name in channels_list:
# spends_constraint += self.channels[channel_name].modified_total_spends
spends_constant.append(self.channels[channel_name].conversion_rate)
spends_constraint += (
self.channels[channel_name].actual_total_spends
* self.channels[channel_name].conversion_rate
)
spends_constraint = spends_constraint * (1 + spends_percent / 100)
# constraint= LinearConstraint(np.ones((num_channels,)), lb = spends_constraint, ub = spends_constraint)
constraint = LinearConstraint(
np.array(spends_constant),
lb=spends_constraint,
ub=spends_constraint,
)
bounds = []
old_spends = []
for channel_name in channels_list:
_channel_class = self.channels[channel_name]
channel_bounds = _channel_class.bounds
channel_actual_total_spends = _channel_class.actual_total_spends * (
(1 + spends_percent / 100)
)
old_spends.append(channel_actual_total_spends)
bounds.append((1 + channel_bounds / 100) * channel_actual_total_spends)
def objective_function(x):
for channel_name, modified_spends in zip(channels_list, x):
self.update(channel_name, modified_spends)
return -1 * self.modified_total_sales
res = minimize(
lambda x: objective_function(x) / 1e8,
method="trust-constr",
x0=old_spends,
constraints=constraint,
bounds=bounds,
options={"maxiter": int(1e7), "xtol": 100},
)
# res = dual_annealing(
# objective_function,
# x0=old_spends,
# mi
# constraints=constraint,
# bounds=bounds,
# tol=1e-16
# )
print(res)
for channel_name, modified_spends in zip(channels_list, res.x):
self.update(channel_name, modified_spends)
return zip(channels_list, res.x)
def save(self):
details = {}
actual_list = []
modified_list = []
data = {}
channel_data = []
summary_rows = []
actual_list.append(
{
"name": "Total",
"Spends": self.actual_total_spends,
"Sales": self.actual_total_sales,
}
)
modified_list.append(
{
"name": "Total",
"Spends": self.modified_total_spends,
"Sales": self.modified_total_sales,
}
)
for channel in self.channels.values():
name_mod = channel.name.replace("_", " ")
if name_mod.lower().endswith(" imp"):
name_mod = name_mod.replace("Imp", " Impressions")
summary_rows.append(
[
name_mod,
channel.actual_total_spends,
channel.modified_total_spends,
channel.actual_total_sales,
channel.modified_total_sales,
round(channel.actual_total_sales / channel.actual_total_spends, 2),
round(
channel.modified_total_sales / channel.modified_total_spends,
2,
),
channel.get_marginal_roi("actual"),
channel.get_marginal_roi("modified"),
]
)
data[channel.name] = channel.modified_spends
data["Date"] = channel.dates
data["Sales"] = (
data.get("Sales", np.zeros((len(channel.dates),)))
+ channel.modified_sales
)
actual_list.append(
{
"name": channel.name,
"Spends": channel.actual_total_spends,
"Sales": channel.actual_total_sales,
"ROI": round(
channel.actual_total_sales / channel.actual_total_spends, 2
),
}
)
modified_list.append(
{
"name": channel.name,
"Spends": channel.modified_total_spends,
"Sales": channel.modified_total_sales,
"ROI": round(
channel.modified_total_sales / channel.modified_total_spends,
2,
),
"Marginal ROI": channel.get_marginal_roi("modified"),
}
)
channel_data.append(
{
"channel": channel.name,
"spends_act": channel.actual_total_spends,
"spends_mod": channel.modified_total_spends,
"sales_act": channel.actual_total_sales,
"sales_mod": channel.modified_total_sales,
}
)
summary_rows.append(
[
"Total",
self.actual_total_spends,
self.modified_total_spends,
self.actual_total_sales,
self.modified_total_sales,
round(self.actual_total_sales / self.actual_total_spends, 2),
round(self.modified_total_sales / self.modified_total_spends, 2),
0.0,
0.0,
]
)
details["Actual"] = actual_list
details["Modified"] = modified_list
columns_index = pd.MultiIndex.from_product(
[[""], ["Channel"]], names=["first", "second"]
)
columns_index = columns_index.append(
pd.MultiIndex.from_product(
[["Spends", "NRPU", "ROI", "MROI"], ["Actual", "Simulated"]],
names=["first", "second"],
)
)
details["Summary"] = pd.DataFrame(summary_rows, columns=columns_index)
data_df = pd.DataFrame(data)
channel_list = list(self.channels.keys())
data_df = data_df[["Date", *channel_list, "Sales"]]
details["download"] = {
"data_df": data_df,
"channels_df": pd.DataFrame(channel_data),
"total_spends_act": self.actual_total_spends,
"total_sales_act": self.actual_total_sales,
"total_spends_mod": self.modified_total_spends,
"total_sales_mod": self.modified_total_sales,
}
return details
@classmethod
def from_dict(cls, attr_dict):
channels_list = attr_dict["channels"]
channels = {
channel["name"]: class_from_dict(channel) for channel in channels_list
}
return Scenario(
name=attr_dict["name"],
channels=channels,
constant=attr_dict["constant"],
correction=attr_dict["correction"],
)
|