Spaces:
Runtime error
Runtime error
import soundfile as sf | |
import torch | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor,Wav2Vec2ProcessorWithLM | |
import gradio as gr | |
import sox | |
import subprocess | |
def read_file_and_process(wav_file): | |
filename = wav_file.split('.')[0] | |
filename_16k = filename + "16k.wav" | |
resampler(wav_file, filename_16k) | |
speech, _ = sf.read(filename_16k) | |
inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True) | |
return inputs | |
def resampler(input_file_path, output_file_path): | |
command = ( | |
f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn " | |
f"{output_file_path}" | |
) | |
subprocess.call(command, shell=True) | |
def parse_transcription_with_lm(logits): | |
result = processor_with_LM.batch_decode(logits.cpu().numpy()) | |
text = result.text | |
transcription = text[0].replace('<s>','') | |
return transcription | |
def parse_transcription(logits): | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) | |
return transcription | |
def parse(wav_file, applyLM): | |
input_values = read_file_and_process(wav_file) | |
with torch.no_grad(): | |
logits = model(**input_values).logits | |
if applyLM: | |
return parse_transcription_with_lm(logits) | |
else: | |
return parse_transcription(logits) | |
# processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-odia-orm-100") | |
# processor_with_LM = Wav2Vec2ProcessorWithLM.from_pretrained("Harveenchadha/vakyansh-wav2vec2-odia-orm-100") | |
# model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-odia-orm-100") | |
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-assamese-asm-8") | |
# processor_with_LM = Wav2Vec2ProcessorWithLM.from_pretrained("Harveenchadha/vakyansh-wav2vec2-assamese-asm-8") | |
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-assamese-asm-8") | |
# processor = Wav2Vec2Processor.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia") | |
# processor_with_LM = Wav2Vec2ProcessorWithLM.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia") | |
# model = Wav2Vec2ForCTC.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia") | |
input_ = gr.Audio(source="upload", type="filepath") | |
txtbox = gr.Textbox( | |
label="Output from model will appear here:", | |
lines=5 | |
) | |
chkbox = gr.Checkbox(label="Apply LM", value=False) | |
gr.Interface(parse, inputs = [input_, chkbox], outputs=txtbox, | |
streaming=True, interactive=True, | |
analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False); |