BigSalmon commited on
Commit
8784af6
·
1 Parent(s): 7e5ef99

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -97
app.py CHANGED
@@ -1,102 +1,81 @@
1
- import argparse
2
- import re
3
- import os
4
  import streamlit as st
5
- import random
6
- import numpy as np
7
- import torch
8
  from transformers import AutoTokenizer, AutoModelForCausalLM
9
- import tokenizers
10
- #os.environ["TOKENIZERS_PARALLELISM"] = "false"
11
- random.seed(None)
12
  first = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.\n\ninformal english:"""
13
- suggested_text_list = [first]
14
- @st.cache(hash_funcs={tokenizers.Tokenizer: id, tokenizers.AddedToken: id})
15
- def load_model(model_name):
16
- tokenizer = AutoTokenizer.from_pretrained(model_name)
17
- model = AutoModelForCausalLM.from_pretrained(model_name)
 
 
 
18
  return model, tokenizer
19
- def extend(input_text, num_return_sequences, bad_words, max_size=20, top_k=50, top_p=0.95):
20
- if len(input_text) == 0:
21
- input_text = ""
22
- encoded_prompt = tokenizer.encode(
23
- input_text, add_special_tokens=False, return_tensors="pt")
24
- encoded_prompt = encoded_prompt.to(device)
25
- if encoded_prompt.size()[-1] == 0:
26
- input_ids = None
27
- else:
28
- input_ids = encoded_prompt
29
- bad_words = bad_words.split()
30
- print(bad_words)
31
- bad_word_ids = []
32
- for bad_word in bad_words:
33
- bad_word = " " + bad_word
34
- ids = tokenizer(bad_word).input_ids
35
- bad_word_ids.append(ids)
36
-
37
- output_sequences = model.generate(
38
- input_ids=input_ids,
39
- max_length=max_size + len(encoded_prompt[0]),
40
- top_k=top_k,
41
- bad_words_ids = bad_word_ids,
42
- top_p=top_p,
43
- do_sample=True,
44
- num_return_sequences=num_return_sequences)
45
- # Remove the batch dimension when returning multiple sequences
46
- if len(output_sequences.shape) > 2:
47
- output_sequences.squeeze_()
48
- generated_sequences = []
49
- print(output_sequences)
50
- for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
51
- generated_sequence = generated_sequence.tolist()
52
- text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
53
- print(text)
54
- total_sequence = (
55
- text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
56
- )
57
- generated_sequences.append(total_sequence)
58
- st.write(total_sequence)
59
-
60
- parsed_text = total_sequence.replace("<|startoftext|>", "").replace("\r","").replace("\n\n", "\n")
61
- if len(parsed_text) == 0:
62
- parsed_text = "שגיאה"
63
- return parsed_text
64
- if __name__ == "__main__":
65
- st.title("GPT2 Demo:")
66
- pre_model_path = "BigSalmon/MrLincoln5"
67
- model, tokenizer = load_model(pre_model_path)
68
- stop_token = "<|endoftext|>"
69
- new_lines = "\n\n\n"
70
- np.random.seed(None)
71
- random_seed = np.random.randint(10000,size=1)
72
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
73
- n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()
74
- torch.manual_seed(random_seed)
75
- if n_gpu > 0:
76
- torch.cuda.manual_seed_all(random_seed)
77
- model.to(device)
78
- text_area = st.text_area("Enter the first few words (or leave blank), tap on \"Generate Text\" below. Tapping again will produce a different result.", first)
79
- st.sidebar.subheader("Configurable parameters")
80
- max_len = st.sidebar.slider("Max-Length", 0, 256, 5,help="The maximum length of the sequence to be generated.")
81
- num_return_sequences = st.sidebar.slider("Outputs", 1, 50, 5,help="The number of outputs to be returned.")
82
- top_k = st.sidebar.slider("Top-K", 0, 100, 40, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
83
- top_p = st.sidebar.slider("Top-P", 0.0, 1.0, 0.92, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.")
84
- bad_words = st.text_input("Words You Do Not Want Generated", " core lemon height time ")
85
 
86
- if st.button("Generate Text"):
87
- with st.spinner(text="Generating results..."):
88
- st.subheader("Result")
89
- print(f"device:{device}, n_gpu:{n_gpu}, random_seed:{random_seed}, maxlen:{max_len}, top_k:{top_k}, top_p:{top_p}")
90
- if len(text_area.strip()) == 0:
91
- text_area = random.choice(suggested_text_list)
92
- result = extend(input_text=text_area,
93
- num_return_sequences=int(num_return_sequences),
94
- bad_words = bad_words,
95
- max_size=int(max_len),
96
- top_k=int(top_k),
97
- top_p=float(top_p))
98
- print("Done length: " + str(len(result)) + " bytes")
99
- #<div class="rtl" dir="rtl" style="text-align:right;">
100
- st.markdown(f"{result}", unsafe_allow_html=True)
101
- st.write("\n\nResult length: " + str(len(result)) + " bytes")
102
- print(f"\"{result}\"")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
 
 
 
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+
 
5
  first = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.\n\ninformal english:"""
6
+
7
+ @st.cache(allow_output_mutation=True)
8
+ def get_model():
9
+ print("hello")
10
+ model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln21")
11
+ print("hello")
12
+ tokenizer = AutoTokenizer.from_pretrained("BigSalmon/Points2")
13
+ print("hello")
14
  return model, tokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ model, tokenizer = get_model()
17
+
18
+ st.text('''How To Make Prompt:
19
+ informal english: sega’s doing mobile gaming right with this approach to exploiting its back catalog, giving people a way to build up their library of classics on devices they’ll always have close to hand for cheap. it’s a far better experience than nintendo’s classic machine sales on its home gaming systems, which tend to be locked in and not passed between hardware generations.
20
+ Translated into the Style of Abraham Lincoln: pursuing the proper course, sega's foray into mobile gaming entails leveraging its back catalog of classics on portable devices that ( are certain to be in reach whenever / will be at the ready for use at all times ) ( without spending a fortune / at minimal cost ). such an endeavor comes as a welcome alternative to nintendo's propensity to ( sell / offer / market ) home gaming systems that are rigidly bound to a single hardware generation.
21
+ Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly bent on / firmly set on / unyielding in its insistence on / steadfastly transfixed by / uncompromising in its commitment to / rigidly decided on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices.
22
+ informal english: garage band has made people who know nothing about music good at creating music.
23
+ Translated into the Style of Abraham Lincoln: garage band ( offers the uninitiated in music the ability to produce professional-quality compositions / catapults those for whom music is an uncharted art the ability the realize masterpieces / stimulates music novice's competency to yield sublime arrangements / begets individuals of rudimentary musical talent the proficiency to fashion elaborate suites ).
24
+ informal english: chrome extensions can make doing regular tasks much easier to get done.
25
+ Translated into the Style of Abraham Lincoln: chrome extensions ( yield the boon of time-saving convenience / ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks / turbocharges the velocity with which one can conduct their obligations ).
26
+ informal english: broadband is finally expanding to rural areas, a great development that will thrust them into modern life.
27
+ Translated into the Style of Abraham Lincoln: broadband is ( ( finally / at last / after years of delay ) arriving in remote locations / springing to life in far-flung outposts / inching into even the most backwater corners of the nation ) that will ( hasten their transition into the modern age / leap-frog them into the twenty-first century / facilitate their integration into contemporary life ).
28
+ informal english: national parks are a big part of the us culture.
29
+ Translated into the Style of Abraham Lincoln: the culture of the united states is ( inextricably ( bound up with / molded by / enriched by / enlivened by ) its ( serene / picturesque / pristine / breathtaking ) national parks ).
30
+ informal english: corn fields are all across illinois, visible once you leave chicago.
31
+ Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.
32
+ informal english:''')
33
+
34
+ temp = st.sidebar.slider("Temperature", 0.7, 1.5)
35
+ number_of_outputs = st.sidebar.slider("Number of Outputs", 5, 50)
36
+ lengths = st.sidebar.slider("Length", 3, 10)
37
+ bad_words = st.text_input("Words You Do Not Want Generated", " core lemon height time ")
38
+
39
+ def run_generate(text, bad_words):
40
+ yo = []
41
+ input_ids = tokenizer.encode(text, return_tensors='pt').to(device)
42
+ res = len(tokenizer.encode(text))
43
+ bad_words = bad_words.split()
44
+ bad_word_ids = []
45
+ for bad_word in bad_words:
46
+ bad_word = " " + bad_word
47
+ ids = tokenizer(bad_word).input_ids
48
+ bad_word_ids.append(ids)
49
+ sample_outputs = model.generate(
50
+ input_ids,
51
+ do_sample=True,
52
+ max_length= res + lengths,
53
+ min_length = res + lengths,
54
+ top_k=50,
55
+ temperature=temp,
56
+ num_return_sequences=number_of_outputs,
57
+ bad_words_ids=bad_word_ids
58
+ )
59
+ for i in range(number_of_outputs):
60
+ e = tokenizer.decode(sample_outputs[i])
61
+ e = e.replace(text, "")
62
+ yo.append(e)
63
+ return yo
64
+ with st.form(key='my_form'):
65
+ text = st.text_area(label='Enter sentence', value=first)
66
+ submit_button = st.form_submit_button(label='Submit')
67
+ if submit_button:
68
+ translated_text = run_generate(text, bad_words)
69
+ st.write(translated_text if translated_text else "No translation found")
70
+ with torch.no_grad():
71
+ text2 = str(text)
72
+ print(text2)
73
+ text3 = tokenizer.encode(text2)
74
+ myinput, past_key_values = torch.tensor([text3]), None
75
+ myinput = myinput
76
+ logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
77
+ logits = logits[0,-1]
78
+ probabilities = torch.nn.functional.softmax(logits)
79
+ best_logits, best_indices = logits.topk(100)
80
+ best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
81
+ st.write(best_words)