Spaces:
Configuration error
Configuration error
Upload 2 files
Browse files- utils/audio_processor.py +17 -0
- utils/text_analysis.py +79 -0
utils/audio_processor.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import speech_recognition as sr
|
2 |
+
|
3 |
+
def convert_audio_to_text() -> str:
|
4 |
+
"""Convert audio from microphone to text."""
|
5 |
+
recognizer = sr.Recognizer()
|
6 |
+
|
7 |
+
with sr.Microphone() as source:
|
8 |
+
print("Listening...")
|
9 |
+
audio = recognizer.listen(source)
|
10 |
+
|
11 |
+
try:
|
12 |
+
text = recognizer.recognize_google(audio)
|
13 |
+
return text
|
14 |
+
except sr.UnknownValueError:
|
15 |
+
return "Could not understand audio"
|
16 |
+
except sr.RequestError:
|
17 |
+
return "Could not request results"
|
utils/text_analysis.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import google.generativeai as genai
|
2 |
+
from typing import List, Dict
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
# Configure Gemini API
|
9 |
+
genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))
|
10 |
+
model = genai.GenerativeModel('gemini-pro')
|
11 |
+
|
12 |
+
def extract_keywords(text: str) -> List[str]:
|
13 |
+
"""Extract important keywords from text using Gemini API."""
|
14 |
+
prompt = f"Extract important technical skills, technologies, and key requirements as keywords from this text. Return only the keywords separated by commas: {text}"
|
15 |
+
response = model.generate_content(prompt)
|
16 |
+
keywords = [k.strip() for k in response.text.split(',')]
|
17 |
+
return keywords
|
18 |
+
|
19 |
+
def generate_summary(text: str) -> str:
|
20 |
+
"""Generate a concise summary of the text using Gemini API."""
|
21 |
+
prompt = f"Provide a concise summary of the following text, focusing on the main points: {text}"
|
22 |
+
response = model.generate_content(prompt)
|
23 |
+
return response.text
|
24 |
+
|
25 |
+
def generate_mcqs(resume: str, job_description: str) -> List[Dict]:
|
26 |
+
"""Generate MCQs based on resume and job description."""
|
27 |
+
prompt = f"""Based on this resume: {resume}
|
28 |
+
And this job description: {job_description}
|
29 |
+
Generate 30 relevant multiple choice questions. For each question, provide:
|
30 |
+
1. The question
|
31 |
+
2. Four options (A, B, C, D)
|
32 |
+
3. The correct answer
|
33 |
+
Format each question as a dictionary with keys: 'question', 'options', 'correct_answer'
|
34 |
+
Return as a Python list of dictionaries."""
|
35 |
+
|
36 |
+
response = model.generate_content(prompt)
|
37 |
+
# Process and format the response into a list of dictionaries
|
38 |
+
# This is a simplified version - you'll need to parse the actual response
|
39 |
+
return eval(response.text)
|
40 |
+
|
41 |
+
def generate_coding_questions(resume: str, job_description: str) -> List[Dict]:
|
42 |
+
"""Generate coding questions based on resume and job description."""
|
43 |
+
prompt = f"""Based on this resume: {resume}
|
44 |
+
And this job description: {job_description}
|
45 |
+
Generate 2 coding questions with:
|
46 |
+
1. Problem statement
|
47 |
+
2. Input/Output examples
|
48 |
+
3. Constraints
|
49 |
+
4. Expected solution approach
|
50 |
+
Format as a list of dictionaries."""
|
51 |
+
|
52 |
+
response = model.generate_content(prompt)
|
53 |
+
return eval(response.text)
|
54 |
+
|
55 |
+
def analyze_interview_response(audio_text: str, job_description: str) -> Dict:
|
56 |
+
"""Analyze the interview response and provide feedback."""
|
57 |
+
prompt = f"""Analyze this interview response: {audio_text}
|
58 |
+
For this job description: {job_description}
|
59 |
+
Provide:
|
60 |
+
1. Overall performance score (0-100)
|
61 |
+
2. Strengths
|
62 |
+
3. Areas for improvement
|
63 |
+
4. Specific concepts to study
|
64 |
+
Return as a dictionary."""
|
65 |
+
|
66 |
+
response = model.generate_content(prompt)
|
67 |
+
return eval(response.text)
|
68 |
+
|
69 |
+
def get_learning_resources(concepts: List[str]) -> Dict[str, List[str]]:
|
70 |
+
"""Get learning resources for concepts that need improvement."""
|
71 |
+
prompt = f"""For these concepts: {concepts}
|
72 |
+
Provide high-quality learning resources including:
|
73 |
+
1. Online courses
|
74 |
+
2. Documentation
|
75 |
+
3. Practice platforms
|
76 |
+
Format as a dictionary with concept keys and resource list values."""
|
77 |
+
|
78 |
+
response = model.generate_content(prompt)
|
79 |
+
return eval(response.text)
|