Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- main.py +31 -0
- requirements.txt +3 -0
main.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
app = Flask("Response API")
|
6 |
+
|
7 |
+
# Load the Hugging Face GPT-2 model and tokenizer
|
8 |
+
model = GPT2LMHeadModel.from_pretrained("microsoft/DialoGPT-medium")
|
9 |
+
tokenizer = GPT2Tokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
10 |
+
|
11 |
+
@app.route("/", methods=["POST"])
|
12 |
+
def receive_data():
|
13 |
+
data = request.get_json()
|
14 |
+
|
15 |
+
print("Prompt:", data['prompt'])
|
16 |
+
print("Length:", data['length'])
|
17 |
+
|
18 |
+
input_text = data['prompt']
|
19 |
+
|
20 |
+
# Tokenize the input text
|
21 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
22 |
+
|
23 |
+
# Generate output using the model
|
24 |
+
output_ids = model.generate(input_ids, max_length=data['length'], num_beams=5, no_repeat_ngram_size=2)
|
25 |
+
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
26 |
+
|
27 |
+
answer_data = { "answer": generated_text }
|
28 |
+
print("Answered with:", answer_data)
|
29 |
+
return jsonify(answer_data)
|
30 |
+
|
31 |
+
app.run(debug=False, port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
flask
|