Spaces:
Running
on
A10G
Running
on
A10G
File size: 10,229 Bytes
8a8dad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
import json
import time
import torch
import random
import inspect
import argparse
import numpy as np
import pandas as pd
from pathlib import Path
from omegaconf import OmegaConf
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from utils.unet import UNet3DConditionModel
from utils.pipeline_magictime import MagicTimePipeline
from utils.util import save_videos_grid
from utils.util import load_weights
@torch.no_grad()
def main(args):
*_, func_args = inspect.getargvalues(inspect.currentframe())
func_args = dict(func_args)
if 'counter' not in globals():
globals()['counter'] = 0
unique_id = globals()['counter']
globals()['counter'] += 1
savedir_base = f"{Path(args.config).stem}"
savedir_prefix = "outputs"
savedir = None
if args.save_path:
savedir = os.path.join(savedir_prefix, args.save_path, f"{savedir_base}-{unique_id}")
else:
savedir = os.path.join(savedir_prefix, f"{savedir_base}-{unique_id}")
while os.path.exists(savedir):
unique_id = globals()['counter']
globals()['counter'] += 1
if args.save_path:
savedir = os.path.join(savedir_prefix, args.save_path, f"{savedir_base}-{unique_id}")
else:
savedir = os.path.join(savedir_prefix, f"{savedir_base}-{unique_id}")
os.makedirs(savedir)
print(f"The results will be save to {savedir}")
model_config = OmegaConf.load(args.config)[0]
inference_config = OmegaConf.load(args.config)[1]
if model_config.magic_adapter_s_path:
print("Use MagicAdapter-S")
if model_config.magic_adapter_t_path:
print("Use MagicAdapter-T")
if model_config.magic_text_encoder_path:
print("Use Magic_Text_Encoder")
samples = []
# create validation pipeline
tokenizer = CLIPTokenizer.from_pretrained(model_config.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(model_config.pretrained_model_path, subfolder="text_encoder").cuda()
vae = AutoencoderKL.from_pretrained(model_config.pretrained_model_path, subfolder="vae").cuda()
unet = UNet3DConditionModel.from_pretrained_2d(model_config.pretrained_model_path, subfolder="unet",
unet_additional_kwargs=OmegaConf.to_container(
inference_config.unet_additional_kwargs)).cuda()
# set xformers
if is_xformers_available() and (not args.without_xformers):
unet.enable_xformers_memory_efficient_attention()
pipeline = MagicTimePipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)),
).to("cuda")
pipeline = load_weights(
pipeline,
motion_module_path=model_config.get("motion_module", ""),
dreambooth_model_path=model_config.get("dreambooth_path", ""),
magic_adapter_s_path=model_config.get("magic_adapter_s_path", ""),
magic_adapter_t_path=model_config.get("magic_adapter_t_path", ""),
magic_text_encoder_path=model_config.get("magic_text_encoder_path", ""),
).to("cuda")
sample_idx = 0
if args.human:
sample_idx = 0 # Initialize sample index
while True:
user_prompt = input("Enter your prompt (or type 'exit' to quit): ")
if user_prompt.lower() == "exit":
break
random_seed = torch.randint(0, 2 ** 32 - 1, (1,)).item()
torch.manual_seed(random_seed)
print(f"current seed: {random_seed}")
print(f"sampling {user_prompt} ...")
# Now, you directly use `user_prompt` to generate a video.
# The following is a placeholder call; you need to adapt it to your actual video generation function.
sample = pipeline(
user_prompt,
num_inference_steps=model_config.steps,
guidance_scale=model_config.guidance_scale,
width=model_config.W,
height=model_config.H,
video_length=model_config.L,
).videos
# Adapt the filename to avoid conflicts and properly represent the content
prompt_for_filename = "-".join(user_prompt.replace("/", "").split(" ")[:10])
save_videos_grid(sample, f"{savedir}/sample/{sample_idx}-{random_seed}-{prompt_for_filename}.gif")
print(f"save to {savedir}/sample/{sample_idx}-{random_seed}-{prompt_for_filename}.gif")
sample_idx += 1
elif args.run_csv:
print("run_csv")
file_path = args.run_csv
data = pd.read_csv(file_path)
for index, row in data.iterrows():
user_prompt = row['name'] # Set the user_prompt to the 'name' field of the current row
videoid = row['videoid'] # Extract videoid for filename
random_seed = torch.randint(0, 2 ** 32 - 1, (1,)).item()
torch.manual_seed(random_seed)
print(f"current seed: {random_seed}")
print(f"sampling {user_prompt} ...")
sample = pipeline(
user_prompt,
num_inference_steps=model_config.steps,
guidance_scale=model_config.guidance_scale,
width=model_config.W,
height=model_config.H,
video_length=model_config.L,
).videos
# Adapt the filename to avoid conflicts and properly represent the content
save_videos_grid(sample, f"{savedir}/sample/{videoid}.gif")
print(f"save to {savedir}/sample/{videoid}.gif")
elif args.run_json:
print("run_json")
file_path = args.run_json
with open(file_path, 'r') as file:
data = json.load(file)
prompts = []
videoids = []
senids = []
for item in data:
prompts.append(item['caption'])
videoids.append(item['video_id'])
senids.append(item['sen_id'])
n_prompts = list(model_config.n_prompt) * len(prompts) if len(
model_config.n_prompt) == 1 else model_config.n_prompt
random_seeds = model_config.get("seed", [-1])
random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
random_seeds = random_seeds * len(prompts) if len(random_seeds) == 1 else random_seeds
model_config.random_seed = []
for prompt_idx, (prompt, n_prompt, random_seed) in enumerate(zip(prompts, n_prompts, random_seeds)):
filename = f"MSRVTT/sample/{videoids[prompt_idx]}-{senids[prompt_idx]}.gif"
if os.path.exists(filename):
print(f"File {filename} already exists, skipping...")
continue
# manually set random seed for reproduction
if random_seed != -1:
torch.manual_seed(random_seed)
else:
torch.seed()
model_config.random_seed.append(torch.initial_seed())
print(f"current seed: {torch.initial_seed()}")
print(f"sampling {prompt} ...")
sample = pipeline(
prompt,
num_inference_steps=model_config.steps,
guidance_scale=model_config.guidance_scale,
width=model_config.W,
height=model_config.H,
video_length=model_config.L,
).videos
# Adapt the filename to avoid conflicts and properly represent the content
save_videos_grid(sample, filename)
print(f"save to {filename}")
else:
prompts = model_config.prompt
n_prompts = list(model_config.n_prompt) * len(prompts) if len(
model_config.n_prompt) == 1 else model_config.n_prompt
random_seeds = model_config.get("seed", [-1])
random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
random_seeds = random_seeds * len(prompts) if len(random_seeds) == 1 else random_seeds
model_config.random_seed = []
for prompt_idx, (prompt, n_prompt, random_seed) in enumerate(zip(prompts, n_prompts, random_seeds)):
# manually set random seed for reproduction
if random_seed != -1:
torch.manual_seed(random_seed)
np.random.seed(random_seed)
random.seed(random_seed)
else:
torch.seed()
model_config.random_seed.append(torch.initial_seed())
print(f"current seed: {torch.initial_seed()}")
print(f"sampling {prompt} ...")
sample = pipeline(
prompt,
negative_prompt=n_prompt,
num_inference_steps=model_config.steps,
guidance_scale=model_config.guidance_scale,
width=model_config.W,
height=model_config.H,
video_length=model_config.L,
).videos
samples.append(sample)
prompt = "-".join((prompt.replace("/", "").split(" ")[:10]))
save_videos_grid(sample, f"{savedir}/sample/{sample_idx}-{random_seed}-{prompt}.gif")
print(f"save to {savedir}/sample/{random_seed}-{prompt}.gif")
sample_idx += 1
samples = torch.concat(samples)
save_videos_grid(samples, f"{savedir}/merge_all.gif", n_rows=4)
OmegaConf.save(model_config, f"{savedir}/model_config.yaml")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--without-xformers", action="store_true")
parser.add_argument("--human", action="store_true", help="Enable human mode for interactive video generation")
parser.add_argument("--run-csv", type=str, default=None)
parser.add_argument("--run-json", type=str, default=None)
parser.add_argument("--save-path", type=str, default=None)
args = parser.parse_args()
main(args)
|