Spaces:
Sleeping
Sleeping
Update app.py
#1
by
waelChafei
- opened
app.py
CHANGED
@@ -1,17 +1,19 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
|
5 |
|
6 |
-
def text_classification(text):
|
7 |
-
result= classifier(text)
|
8 |
-
sentiment_label = result[0]['label']
|
9 |
-
sentiment_score = result[0]['score']
|
10 |
-
formatted_output = f"This sentiment is {sentiment_label} with the probability {sentiment_score*100:.2f}%"
|
11 |
-
return formatted_output
|
12 |
|
13 |
-
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
io = gr.Interface(fn=text_classification,
|
16 |
inputs= gr.Textbox(lines=2, label="Text", placeholder="Enter title here..."),
|
17 |
outputs=gr.Textbox(lines=2, label="Text Classification Result"),
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
examples=["This is wonderful movie!", "The movie was really bad; I didn't like it."]
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
model_path = "waelChafei/bertuned"
|
8 |
|
9 |
+
|
10 |
+
model = BertForSequenceClassification.from_pretrained(model_path)
|
11 |
+
tokenizer= BertTokenizerFast.from_pretrained(model_path)
|
12 |
+
nlp= pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
13 |
+
|
14 |
+
def text_classification(text):
|
15 |
+
result= classifier(text)
|
16 |
+
return result
|
17 |
io = gr.Interface(fn=text_classification,
|
18 |
inputs= gr.Textbox(lines=2, label="Text", placeholder="Enter title here..."),
|
19 |
outputs=gr.Textbox(lines=2, label="Text Classification Result"),
|