|
import whisper |
|
from pytube import YouTube |
|
import requests, io |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import time |
|
import streamlit as st |
|
from streamlit_lottie import st_lottie |
|
import numpy as np |
|
import os |
|
|
|
st.set_page_config(page_title="Youtube Transcriber", page_icon="π£", layout="wide") |
|
|
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_lottieurl(url: str): |
|
r = requests.get(url) |
|
if r.status_code != 200: |
|
return None |
|
return r.json() |
|
|
|
col1, col2 = st.columns([1, 3]) |
|
with col1: |
|
lottie = load_lottieurl("https://assets9.lottiefiles.com/private_files/lf30_bntlaz7t.json") |
|
st_lottie(lottie, speed=1, height=200, width=200) |
|
|
|
with col2: |
|
st.write(""" |
|
## Youtube Transcriber |
|
##### This is an app that transcribes YouTube videos into text.""") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def populate_metadata(link): |
|
yt = YouTube(link) |
|
author = yt.author |
|
title = yt.title |
|
description = yt.description |
|
thumbnail = yt.thumbnail_url |
|
length = yt.length |
|
views = yt.views |
|
return author, title, description, thumbnail, length, views |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def convert(seconds): |
|
return time.strftime("%H:%M:%S", time.gmtime(seconds)) |
|
|
|
|
|
loaded_model = whisper.load_model("base") |
|
current_size = "None" |
|
size = st.selectbox("Model Size", ["tiny", "base", "small", "medium", "large"], index=1) |
|
|
|
|
|
def change_model(current_size, size): |
|
if current_size != size: |
|
loaded_model = whisper.load_model(size) |
|
st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} " |
|
f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.") |
|
return loaded_model |
|
else: |
|
return None |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def inference(link): |
|
yt = YouTube(link) |
|
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4") |
|
results = loaded_model.transcribe(path) |
|
return results["text"] |
|
|
|
|
|
def main(): |
|
change_model(current_size, size) |
|
link = st.text_input("YouTube Link") |
|
if st.button("Transcribe"): |
|
author, title, description, thumbnail, length, views = populate_metadata(link) |
|
results = inference(link) |
|
|
|
col3, col4 = st.columns(2) |
|
with col3: |
|
|
|
st.video(link) |
|
st.markdown(f"**Channel**: {author}") |
|
st.markdown(f"**Title**: {title}") |
|
st.markdown(f"**Length**: {convert(length)}") |
|
st.markdown(f"**Views**: {views:,}") |
|
|
|
with col4: |
|
with st.expander("Video Description"): |
|
st.write(description) |
|
|
|
with st.expander("Video Transcript"): |
|
st.write(results) |
|
|
|
with open("transcript.txt", "w+") as f: |
|
f.writelines(results) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f: |
|
data = f.read() |
|
if st.download_button(label="Download Transcript", |
|
data=data, |
|
file_name="transcript.txt"): |
|
st.success("Downloaded Successfully!") |
|
|
|
if __name__ == "__main__": |
|
main() |