BatuhanYilmaz's picture
Upload app.py
9a2eb37
raw
history blame
3.86 kB
import whisper
from pytube import YouTube
import requests, io
from urllib.request import urlopen
from PIL import Image
import time
import streamlit as st
from streamlit_lottie import st_lottie
import numpy as np
import os
st.set_page_config(page_title="Youtube Transcriber", page_icon="πŸ—£", layout="wide")
# Define a function that we can use to load lottie files from a link.
@st.cache(allow_output_mutation=True)
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
col1, col2 = st.columns([1, 3])
with col1:
lottie = load_lottieurl("https://assets9.lottiefiles.com/private_files/lf30_bntlaz7t.json")
st_lottie(lottie, speed=1, height=200, width=200)
with col2:
st.write("""
## Youtube Transcriber
##### This is an app that transcribes YouTube videos into text.""")
#def load_model(size):
#default_size = size
#if size == default_size:
#return None
#else:
#loaded_model = whisper.load_model(size)
#return loaded_model
@st.cache(allow_output_mutation=True)
def populate_metadata(link):
yt = YouTube(link)
author = yt.author
title = yt.title
description = yt.description
thumbnail = yt.thumbnail_url
length = yt.length
views = yt.views
return author, title, description, thumbnail, length, views
# Uncomment if you want to fetch the thumbnails as well.
#def fetch_thumbnail(thumbnail):
#tnail = urlopen(thumbnail)
#raw_data = tnail.read()
#image = Image.open(io.BytesIO(raw_data))
#st.image(image, use_column_width=True)
def convert(seconds):
return time.strftime("%H:%M:%S", time.gmtime(seconds))
loaded_model = whisper.load_model("base")
current_size = "None"
size = st.selectbox("Model Size", ["tiny", "base", "small", "medium", "large"], index=1)
def change_model(current_size, size):
if current_size != size:
loaded_model = whisper.load_model(size)
st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} "
f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.")
return loaded_model
else:
return None
@st.cache(allow_output_mutation=True)
def inference(link):
yt = YouTube(link)
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
results = loaded_model.transcribe(path)
return results["text"]
def main():
change_model(current_size, size)
link = st.text_input("YouTube Link")
if st.button("Transcribe"):
author, title, description, thumbnail, length, views = populate_metadata(link)
results = inference(link)
col3, col4 = st.columns(2)
with col3:
#fetch_thumbnail(thumbnail)
st.video(link)
st.markdown(f"**Channel**: {author}")
st.markdown(f"**Title**: {title}")
st.markdown(f"**Length**: {convert(length)}")
st.markdown(f"**Views**: {views:,}")
with col4:
with st.expander("Video Description"):
st.write(description)
#st.markdown(f"**Video Description**: {description}")
with st.expander("Video Transcript"):
st.write(results)
# Write the results to a .txt file and download it.
with open("transcript.txt", "w+") as f:
f.writelines(results)
f.close()
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
data = f.read()
if st.download_button(label="Download Transcript",
data=data,
file_name="transcript.txt"):
st.success("Downloaded Successfully!")
if __name__ == "__main__":
main()