Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,40 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from ultralytics import YOLO
|
3 |
-
import cv2
|
4 |
-
from PIL import Image
|
5 |
-
import numpy as np
|
6 |
-
|
7 |
-
# Load the pre-trained YOLOv8 model
|
8 |
-
model = YOLO("
|
9 |
-
|
10 |
-
# Title for the web app
|
11 |
-
st.title("YOLOv8 Object Detection - Image Upload")
|
12 |
-
|
13 |
-
# Instructions
|
14 |
-
st.write("Upload an image, and YOLOv8 will predict the objects in the image with bounding boxes.")
|
15 |
-
|
16 |
-
# File uploader widget
|
17 |
-
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
18 |
-
|
19 |
-
if uploaded_file is not None:
|
20 |
-
# Read the uploaded image file and display it
|
21 |
-
image = Image.open(uploaded_file)
|
22 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
23 |
-
|
24 |
-
# Convert the image to a numpy array for YOLO processing
|
25 |
-
img_array = np.array(image)
|
26 |
-
|
27 |
-
# Make predictions using the model
|
28 |
-
results = model.predict(img_array, conf=0.5, iou=0.4)
|
29 |
-
|
30 |
-
# Display the results
|
31 |
-
st.write(f"Detected {len(results)} objects.")
|
32 |
-
|
33 |
-
# Annotate the image with bounding boxes
|
34 |
-
annotated_img = results[0].plot()
|
35 |
-
|
36 |
-
# Convert the annotated image to a format suitable for Streamlit
|
37 |
-
annotated_img_pil = Image.fromarray(annotated_img)
|
38 |
-
|
39 |
-
# Display the annotated image
|
40 |
-
st.image(annotated_img_pil, caption="Processed Image with Bounding Boxes", use_column_width=True)
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import cv2
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Load the pre-trained YOLOv8 model
|
8 |
+
model = YOLO("yolov8x.pt") # Replace with the path to your model
|
9 |
+
|
10 |
+
# Title for the web app
|
11 |
+
st.title("YOLOv8 Object Detection - Image Upload")
|
12 |
+
|
13 |
+
# Instructions
|
14 |
+
st.write("Upload an image, and YOLOv8 will predict the objects in the image with bounding boxes.")
|
15 |
+
|
16 |
+
# File uploader widget
|
17 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
18 |
+
|
19 |
+
if uploaded_file is not None:
|
20 |
+
# Read the uploaded image file and display it
|
21 |
+
image = Image.open(uploaded_file)
|
22 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
23 |
+
|
24 |
+
# Convert the image to a numpy array for YOLO processing
|
25 |
+
img_array = np.array(image)
|
26 |
+
|
27 |
+
# Make predictions using the model
|
28 |
+
results = model.predict(img_array, conf=0.5, iou=0.4)
|
29 |
+
|
30 |
+
# Display the results
|
31 |
+
st.write(f"Detected {len(results)} objects.")
|
32 |
+
|
33 |
+
# Annotate the image with bounding boxes
|
34 |
+
annotated_img = results[0].plot()
|
35 |
+
|
36 |
+
# Convert the annotated image to a format suitable for Streamlit
|
37 |
+
annotated_img_pil = Image.fromarray(annotated_img)
|
38 |
+
|
39 |
+
# Display the annotated image
|
40 |
+
st.image(annotated_img_pil, caption="Processed Image with Bounding Boxes", use_column_width=True)
|