finalBalnur / app.py
Balnur26's picture
01.56
9b9d332
raw
history blame contribute delete
799 Bytes
import streamlit as st
from transformers import pipeline
@st.cache_resource
def load_model():
model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned"
return pipeline("text-classification", model=model_path, tokenizer=model_path)
sentiment_classifier = load_model()
st.title("Sentiment Analysis Web App")
st.write("Enter text to analyze its sentiment (Positive/Negative).")
user_input = st.text_area("Enter your text here:")
if st.button("Analyze Sentiment"):
if user_input.strip():
result = sentiment_classifier(user_input)
label = result[0]['label']
score = result[0]['score']
st.write(f"**Sentiment:** {label}")
st.write(f"**Confidence Score:** {score:.2f}")
else:
st.write("Please enter some text to analyze.")