import streamlit as st from transformers import pipeline @st.cache_resource def load_model(): model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned" return pipeline("text-classification", model=model_path, tokenizer=model_path) sentiment_classifier = load_model() st.title("Sentiment Analysis Web App") st.write("Enter text to analyze its sentiment (Positive/Negative).") user_input = st.text_area("Enter your text here:") if st.button("Analyze Sentiment"): if user_input.strip(): result = sentiment_classifier(user_input) label = result[0]['label'] score = result[0]['score'] st.write(f"**Sentiment:** {label}") st.write(f"**Confidence Score:** {score:.2f}") else: st.write("Please enter some text to analyze.")