eng-to-hau / app.py
Baghdad99's picture
Update app.py
1405cbc
raw
history blame
2.94 kB
import torch
import gradio as gr
from transformers import pipeline, AutoTokenizer, M2M100ForConditionalGeneration
from tokenization_small100 import SMALL100Tokenizer
import numpy as np
from pydub import AudioSegment
# Load the pipeline for speech recognition
pipe = pipeline(
"automatic-speech-recognition",
model="DrishtiSharma/whisper-large-v2-hausa",
tokenizer="DrishtiSharma/whisper-large-v2-hausa"
)
# Load the new translation model and tokenizer
model_name = 'alirezamsh/small100'
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
tokenizer = SMALL100Tokenizer.from_pretrained(model_name)
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
# Define the function to translate speech
def translate_speech(audio_file):
print(f"Type of audio: {type(audio_file)}, Value of audio: {audio_file}") # Debug line
# Load the audio file with pydub
audio = AudioSegment.from_mp3(audio_file) # Change this line
# Convert the audio to mono and get the raw data
audio = audio.set_channels(1)
audio_data = np.array(audio.get_array_of_samples())
# Convert the numpy array to double
audio_data = audio_data.astype(np.float64)
# Use the speech recognition pipeline to transcribe the audio
output = pipe(audio_data)
print(f"Output: {output}") # Print the output to see what it contains
# Check if the output contains 'text'
if 'text' in output:
transcription = output["text"]
else:
print("The output does not contain 'text'")
return
# Use the new translation model to translate the transcription
text = "translate Hausa to English: " + transcription
tokenizer.tgt_lang = "en"
encoded_text = tokenizer(text, return_tensors="pt")
outputs = model.generate(**encoded_text)
# Decode the tokens into text
translated_text_str = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Use the text-to-speech pipeline to synthesize the translated text
synthesised_speech = tts(translated_text_str)
# Check if the synthesised speech contains 'audio'
if 'audio' in synthesised_speech:
synthesised_speech_data = synthesised_speech['audio']
else:
print("The synthesised speech does not contain 'audio'")
return
# Flatten the audio data
synthesised_speech_data = synthesised_speech_data.flatten()
# Scale the audio data to the range of int16 format
synthesised_speech = (synthesised_speech_data * 32767).astype(np.int16)
return 16000, synthesised_speech
# Define the Gradio interface
iface = gr.Interface(
fn=translate_speech,
inputs=gr.inputs.Audio(type="filepath"), # Change this line
outputs=gr.outputs.Audio(type="numpy"),
title="Hausa to English Translation",
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
)
iface.launch()