Spaces:
Sleeping
Sleeping
# Copyright (c) 2022 Idiap Research Institute, http://www.idiap.ch/ | |
# Written by Alireza Mohammadshahi <[email protected]> | |
# This is a modified version of https://github.com/huggingface/transformers/blob/main/src/transformers/models/m2m_100/tokenization_m2m_100.py | |
# which owns by Fariseq Authors and The HuggingFace Inc. team. | |
# | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for SMALL100.""" | |
import json | |
import os | |
from pathlib import Path | |
from shutil import copyfile | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import sentencepiece | |
from transformers.tokenization_utils import BatchEncoding, PreTrainedTokenizer | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
SPIECE_UNDERLINE = "▁" | |
VOCAB_FILES_NAMES = { | |
"vocab_file": "vocab.json", | |
"spm_file": "sentencepiece.bpe.model", | |
"tokenizer_config_file": "tokenizer_config.json", | |
} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": { | |
"alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/vocab.json", | |
}, | |
"spm_file": { | |
"alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/sentencepiece.bpe.model", | |
}, | |
"tokenizer_config_file": { | |
"alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/tokenizer_config.json", | |
}, | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"alirezamsh/small100": 1024, | |
} | |
# fmt: off | |
FAIRSEQ_LANGUAGE_CODES = { | |
"m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"] | |
} | |
# fmt: on | |
class SMALL100Tokenizer(PreTrainedTokenizer): | |
""" | |
Construct an SMALL100 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). | |
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
this superclass for more information regarding those methods. | |
Args: | |
vocab_file (`str`): | |
Path to the vocabulary file. | |
spm_file (`str`): | |
Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that | |
contains the vocabulary. | |
tgt_lang (`str`, *optional*): | |
A string representing the target language. | |
eos_token (`str`, *optional*, defaults to `"</s>"`): | |
The end of sequence token. | |
sep_token (`str`, *optional*, defaults to `"</s>"`): | |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
sequence classification or for a text and a question for question answering. It is also used as the last | |
token of a sequence built with special tokens. | |
unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
pad_token (`str`, *optional*, defaults to `"<pad>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
language_codes (`str`, *optional*): | |
What language codes to use. Should be `"m2m100"`. | |
sp_model_kwargs (`dict`, *optional*): | |
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for | |
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, | |
to set: | |
- `enable_sampling`: Enable subword regularization. | |
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. | |
- `nbest_size = {0,1}`: No sampling is performed. | |
- `nbest_size > 1`: samples from the nbest_size results. | |
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) | |
using forward-filtering-and-backward-sampling algorithm. | |
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for | |
BPE-dropout. | |
Examples: | |
```python | |
>>> from tokenization_small100 import SMALL100Tokenizer | |
>>> tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100", tgt_lang="ro") | |
>>> src_text = " UN Chief Says There Is No Military Solution in Syria" | |
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" | |
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") | |
>>> model(**model_inputs) # should work | |
```""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
model_input_names = ["input_ids", "attention_mask"] | |
prefix_tokens: List[int] = [] | |
suffix_tokens: List[int] = [] | |
def __init__( | |
self, | |
vocab_file, | |
spm_file, | |
tgt_lang=None, | |
bos_token="<s>", | |
eos_token="</s>", | |
sep_token="</s>", | |
pad_token="<pad>", | |
unk_token="<unk>", | |
language_codes="m2m100", | |
sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
num_madeup_words=8, | |
**kwargs, | |
) -> None: | |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | |
self.language_codes = language_codes | |
fairseq_language_code = FAIRSEQ_LANGUAGE_CODES[language_codes] | |
self.lang_code_to_token = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code} | |
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) | |
kwargs["additional_special_tokens"] += [ | |
self.get_lang_token(lang_code) | |
for lang_code in fairseq_language_code | |
if self.get_lang_token(lang_code) not in kwargs["additional_special_tokens"] | |
] | |
super().__init__( | |
tgt_lang=tgt_lang, | |
bos_token=bos_token, | |
eos_token=eos_token, | |
sep_token=sep_token, | |
unk_token=unk_token, | |
pad_token=pad_token, | |
language_codes=language_codes, | |
sp_model_kwargs=self.sp_model_kwargs, | |
num_madeup_words=num_madeup_words, | |
**kwargs, | |
) | |
self.vocab_file = vocab_file | |
self.encoder = load_json(vocab_file) | |
self.decoder = {v: k for k, v in self.encoder.items()} | |
self.spm_file = spm_file | |
self.sp_model = load_spm(spm_file, self.sp_model_kwargs) | |
self.encoder_size = len(self.encoder) | |
self.lang_token_to_id = { | |
self.get_lang_token(lang_code): self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code) | |
} | |
self.lang_code_to_id = {lang_code: self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)} | |
self.id_to_lang_token = {v: k for k, v in self.lang_token_to_id.items()} | |
self._tgt_lang = tgt_lang if tgt_lang is not None else "en" | |
self.cur_lang_id = self.get_lang_id(self._tgt_lang) | |
self.set_lang_special_tokens(self._tgt_lang) | |
self.num_madeup_words = num_madeup_words | |
def vocab_size(self) -> int: | |
return len(self.encoder) + len(self.lang_token_to_id) + self.num_madeup_words | |
def tgt_lang(self) -> str: | |
return self._tgt_lang | |
def tgt_lang(self, new_tgt_lang: str) -> None: | |
self._tgt_lang = new_tgt_lang | |
self.set_lang_special_tokens(self._tgt_lang) | |
def _tokenize(self, text: str) -> List[str]: | |
return self.sp_model.encode(text, out_type=str) | |
def _convert_token_to_id(self, token): | |
if token in self.lang_token_to_id: | |
return self.lang_token_to_id[token] | |
return self.encoder.get(token, self.encoder[self.unk_token]) | |
def _convert_id_to_token(self, index: int) -> str: | |
"""Converts an index (integer) in a token (str) using the decoder.""" | |
if index in self.id_to_lang_token: | |
return self.id_to_lang_token[index] | |
return self.decoder.get(index, self.unk_token) | |
def convert_tokens_to_string(self, tokens: List[str]) -> str: | |
"""Converts a sequence of tokens (strings for sub-words) in a single string.""" | |
return self.sp_model.decode(tokens) | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
prefix_ones = [1] * len(self.prefix_tokens) | |
suffix_ones = [1] * len(self.suffix_tokens) | |
if token_ids_1 is None: | |
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones | |
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. An MBART sequence has the following format, where `X` represents the sequence: | |
- `input_ids` (for encoder) `X [eos, src_lang_code]` | |
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` | |
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a | |
separator. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
if token_ids_1 is None: | |
if self.prefix_tokens is None: | |
return token_ids_0 + self.suffix_tokens | |
else: | |
return self.prefix_tokens + token_ids_0 + self.suffix_tokens | |
# We don't expect to process pairs, but leave the pair logic for API consistency | |
if self.prefix_tokens is None: | |
return token_ids_0 + token_ids_1 + self.suffix_tokens | |
else: | |
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens | |
def get_vocab(self) -> Dict: | |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
def __getstate__(self) -> Dict: | |
state = self.__dict__.copy() | |
state["sp_model"] = None | |
return state | |
def __setstate__(self, d: Dict) -> None: | |
self.__dict__ = d | |
# for backward compatibility | |
if not hasattr(self, "sp_model_kwargs"): | |
self.sp_model_kwargs = {} | |
self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs) | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
save_dir = Path(save_directory) | |
if not save_dir.is_dir(): | |
raise OSError(f"{save_directory} should be a directory") | |
vocab_save_path = save_dir / ( | |
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] | |
) | |
spm_save_path = save_dir / ( | |
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] | |
) | |
save_json(self.encoder, vocab_save_path) | |
if os.path.abspath(self.spm_file) != os.path.abspath(spm_save_path) and os.path.isfile(self.spm_file): | |
copyfile(self.spm_file, spm_save_path) | |
elif not os.path.isfile(self.spm_file): | |
with open(spm_save_path, "wb") as fi: | |
content_spiece_model = self.sp_model.serialized_model_proto() | |
fi.write(content_spiece_model) | |
return (str(vocab_save_path), str(spm_save_path)) | |
def prepare_seq2seq_batch( | |
self, | |
src_texts: List[str], | |
tgt_texts: Optional[List[str]] = None, | |
tgt_lang: str = "ro", | |
**kwargs, | |
) -> BatchEncoding: | |
self.tgt_lang = tgt_lang | |
self.set_lang_special_tokens(self.tgt_lang) | |
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) | |
def _build_translation_inputs(self, raw_inputs, tgt_lang: Optional[str], **extra_kwargs): | |
"""Used by translation pipeline, to prepare inputs for the generate function""" | |
if tgt_lang is None: | |
raise ValueError("Translation requires a `tgt_lang` for this model") | |
self.tgt_lang = tgt_lang | |
inputs = self(raw_inputs, add_special_tokens=True, **extra_kwargs) | |
return inputs | |
def _switch_to_input_mode(self): | |
self.set_lang_special_tokens(self.tgt_lang) | |
def _switch_to_target_mode(self): | |
self.prefix_tokens = None | |
self.suffix_tokens = [self.eos_token_id] | |
def set_lang_special_tokens(self, src_lang: str) -> None: | |
"""Reset the special tokens to the tgt lang setting. No prefix and suffix=[eos, tgt_lang_code].""" | |
lang_token = self.get_lang_token(src_lang) | |
self.cur_lang_id = self.lang_token_to_id[lang_token] | |
self.prefix_tokens = [self.cur_lang_id] | |
self.suffix_tokens = [self.eos_token_id] | |
def get_lang_token(self, lang: str) -> str: | |
return self.lang_code_to_token[lang] | |
def get_lang_id(self, lang: str) -> int: | |
lang_token = self.get_lang_token(lang) | |
return self.lang_token_to_id[lang_token] | |
def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: | |
spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs) | |
spm.Load(str(path)) | |
return spm | |
def load_json(path: str) -> Union[Dict, List]: | |
with open(path, "r") as f: | |
return json.load(f) | |
def save_json(data, path: str) -> None: | |
with open(path, "w") as f: | |
json.dump(data, f, indent=2) | |