Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, AutoTokenizer | |
from huggingsound import SpeechRecognitionModel | |
import numpy as np | |
import soundfile as sf | |
import tempfile | |
# Load the model for speech recognition | |
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english") | |
translator = pipeline("text2text-generation", model="Baghdad99/saad-english-text-to-hausa-text") | |
tts = pipeline("text-to-speech", model="Baghdad99/hausa_voice_tts") | |
# Define the function to translate speech | |
def translate_speech(audio_data_tuple): | |
print(f"Type of audio: {type(audio_data_tuple)}, Value of audio: {audio_data_tuple}") # Debug line | |
# Extract the audio data from the tuple | |
sample_rate, audio_data = audio_data_tuple | |
# Save the audio data to a temporary file | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file: | |
sf.write(temp_audio_file.name, audio_data, sample_rate) | |
# Use the speech recognition model to transcribe the audio | |
output = model.transcribe([temp_audio_file.name]) | |
print(f"Output: {output}") # Print the output to see what it contains | |
# Use the speech recognition model to transcribe the audio | |
output = model.transcribe(audio_data) | |
print(f"Output: {output}") # Print the output to see what it contains | |
# Check if the output contains 'transcription' | |
if 'transcription' in output: | |
transcription = output["transcription"] | |
else: | |
print("The output does not contain 'transcription'") | |
return | |
# Use the translation pipeline to translate the transcription | |
translated_text = translator(transciption, return_tensors="pt") | |
print(f"Translated text: {translated_text}") # Print the translated text to see what it contains | |
# Check if the translated text contains 'generated_token_ids' | |
if 'generated_token_ids' in translated_text[0]: | |
# Decode the tokens into text | |
translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids']) | |
else: | |
print("The translated text does not contain 'generated_token_ids'") | |
return | |
# Use the text-to-speech pipeline to synthesize the translated text | |
synthesised_speech = tts(translated_text_str) | |
print(f"Synthesised speech: {synthesised_speech}") # Print the synthesised speech to see what it contains | |
# Check if the synthesised speech contains 'audio' | |
if 'audio' in synthesised_speech: | |
synthesised_speech_data = synthesised_speech['audio'] | |
else: | |
print("The synthesised speech does not contain 'audio'") | |
return | |
# Flatten the audio data | |
synthesised_speech_data = synthesised_speech_data.flatten() | |
# Scale the audio data to the range of int16 format | |
synthesised_speech = (synthesised_speech_data * 32767).astype(np.int16) | |
return 16000, synthesised_speech | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=translate_speech, | |
inputs=gr.inputs.Audio(source="microphone"), # Change this line | |
outputs=gr.outputs.Audio(type="numpy"), | |
title="Hausa to English Translation", | |
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis." | |
) | |
iface.launch() | |