Spaces:
Sleeping
Sleeping
import torch # Add this line | |
import gradio as gr | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, pipeline, AutoTokenizer | |
import numpy as np | |
import soundfile as sf | |
import tempfile | |
# Load the models and processors | |
asr_model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english") | |
asr_processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english") | |
translator = pipeline("text2text-generation", model="dammyogt/damilola-finetuned-NLP-opus-mt-en-ha") | |
tts = pipeline("text-to-speech", model="Baghdad99/hausa_voice_tts") | |
def translate_speech(audio_data_tuple): | |
# Extract the audio data from the tuple | |
sample_rate, audio_data = audio_data_tuple | |
# Save the audio data to a temporary file | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file: | |
sf.write(temp_audio_file.name, audio_data, sample_rate) | |
# Prepare the input dictionary | |
input_dict = asr_processor(temp_audio_file.name, return_tensors="pt", padding=True) | |
# Use the ASR model to get the logits | |
logits = asr_model(input_dict.input_values.to("cpu")).logits | |
# Get the predicted IDs | |
pred_ids = torch.argmax(logits, dim=-1)[0] | |
# Decode the predicted IDs to get the transcription | |
transcription = asr_processor.decode(pred_ids) | |
print(f"Transcription: {transcription}") # Print the transcription | |
# Use the translation pipeline to translate the transcription | |
translated_text = translator(transcription, return_tensors="pt") | |
print(f"Translated text: {translated_text}") # Print the translated text | |
# Check if the translated text contains 'generated_token_ids' | |
if 'generated_token_ids' in translated_text[0]: | |
# Decode the tokens into text | |
translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids']) | |
print(f"Translated text string: {translated_text_str}") # Print the translated text string | |
else: | |
print("The translated text does not contain 'generated_token_ids'") | |
return | |
# Use the text-to-speech pipeline to synthesize the translated text | |
synthesised_speech = tts(translated_text_str) | |
# Check if the synthesised speech contains 'audio' | |
if 'audio' in synthesised_speech: | |
synthesised_speech_data = synthesised_speech['audio'] | |
else: | |
print("The synthesised speech does not contain 'audio'") | |
return | |
# Flatten the audio data | |
synthesised_speech_data = synthesised_speech_data.flatten() | |
# Scale the audio data to the range of int16 format | |
synthesised_speech = (synthesised_speech_data * 32767).astype(np.int16) | |
return 16000, synthesised_speech | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=translate_speech, | |
inputs=gr.inputs.Audio(source="microphone"), # Change this line | |
outputs=gr.outputs.Audio(type="numpy"), | |
title="English to Hausa Translation", | |
description="Realtime demo for English to Hausa translation using speech recognition and text-to-speech synthesis." | |
) | |
iface.launch() | |