Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import numpy as np | |
# Load the pipeline for speech recognition and translation | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model="Baghdad99/saad-speech-recognition-hausa-audio-to-text", | |
tokenizer="Baghdad99/saad-speech-recognition-hausa-audio-to-text" | |
) | |
translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text") | |
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts") | |
# Define the function to translate speech | |
def translate_speech(audio): | |
# Separate the sample rate and the audio data | |
sample_rate, audio_data = audio | |
# Use the speech recognition pipeline to transcribe the audio | |
output = pipe(audio_data) | |
print(f"Output: {output}") # Print the output to see what it contains | |
# Check if the output contains 'text' | |
if 'text' in output: | |
transcription = output["text"] | |
else: | |
print("The output does not contain 'text'") | |
return | |
# Use the translation pipeline to translate the transcription | |
translated_text = translator(transcription, return_tensors="pt", padding=True) | |
# Use the text-to-speech pipeline to synthesize the translated text | |
synthesised_speech = tts(translated_text, return_tensors='pt') | |
# Define the max_range variable | |
max_range = 32767 # You can adjust this value based on your requirements | |
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) | |
return 16000, synthesised_speech | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=translate_speech, | |
inputs=gr.inputs.Audio(source="microphone", type="numpy"), | |
outputs=gr.outputs.Audio(type="numpy"), | |
title="Hausa to English Translation", | |
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis." | |
) | |
iface.launch() | |