Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTextToWaveform | |
# Load your pretrained models | |
asr_model = Wav2Vec2ForCTC.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text") | |
asr_processor = Wav2Vec2Processor.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text") | |
# Load the Hausa translation model | |
translation_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/saad-hausa-text-to-english-text") | |
translation_model = AutoModelForSeq2SeqLM.from_pretrained("Baghdad99/saad-hausa-text-to-english-text", from_tf=True) | |
# Load the Text-to-Speech model | |
tts_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/english_voice_tts") | |
tts_model = AutoModelForTextToWaveform.from_pretrained("Baghdad99/english_voice_tts") | |
def translate_speech(speech): | |
# Extract the audio signal and sample rate | |
audio_signal, sample_rate = speech | |
# Convert stereo to mono if necessary | |
if len(audio_signal.shape) > 1: | |
audio_signal = audio_signal.mean(axis=0) | |
# Transcribe the speech to text | |
inputs = asr_processor(audio_signal, return_tensors="pt", padding=True) | |
logits = asr_model(inputs.input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = asr_processor.decode(predicted_ids[0]) | |
# Translate the text | |
translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True)) | |
translated_text = [translation_tokenizer.decode(t, skip_special_tokens=True) for t in translated] | |
# Convert the translated text to speech | |
inputs = tts_tokenizer(translated_text, return_tensors='pt') | |
audio = tts_model.generate(inputs['input_ids']) | |
return audio | |
# Define the Gradio interface | |
iface = gr.Interface(fn=translate_speech, inputs=gr.inputs.Audio(source="microphone"), outputs="audio") | |
iface.launch() | |