Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
import tempfile
|
4 |
+
|
5 |
+
# Corrected model class name
|
6 |
+
model_name = "potsawee/t5-large-generation-squad-QuestionAnswer"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
uploaded_file = st.file_uploader("Upload Document or Paragraph")
|
11 |
+
|
12 |
+
if uploaded_file is not None:
|
13 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
14 |
+
temp_file.write(uploaded_file.read())
|
15 |
+
document_text = temp_file.read().decode('utf-8')
|
16 |
+
st.success("Document uploaded successfully!")
|
17 |
+
else:
|
18 |
+
document_text = st.text_area("Enter Text (Optional)", height=200)
|
19 |
+
|
20 |
+
question = st.text_input("Ask a Question")
|
21 |
+
bouton_ok = st.button("Answer")
|
22 |
+
|
23 |
+
if bouton_ok:
|
24 |
+
# Improved prompt for better context
|
25 |
+
context = document_text if document_text else "Empty document."
|
26 |
+
inputs = tokenizer.encode(f"Question: {question} Context: {context}", return_tensors='pt', max_length=512, truncation=True)
|
27 |
+
outputs = model.generate(inputs, max_length=150, min_length=80, length_penalty=5, num_beams=2)
|
28 |
+
summary = tokenizer.decode(outputs[0])
|
29 |
+
st.text("Answer:")
|
30 |
+
st.text(summary)
|