BOUSLIMI commited on
Commit
550e861
·
verified ·
1 Parent(s): 50cc3c8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+ import tempfile
4
+
5
+ # Corrected model class name
6
+ model_name = "potsawee/t5-large-generation-squad-QuestionAnswer"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
9
+
10
+ uploaded_file = st.file_uploader("Upload Document or Paragraph")
11
+
12
+ if uploaded_file is not None:
13
+ with tempfile.NamedTemporaryFile(delete=False) as temp_file:
14
+ temp_file.write(uploaded_file.read())
15
+ document_text = temp_file.read().decode('utf-8')
16
+ st.success("Document uploaded successfully!")
17
+ else:
18
+ document_text = st.text_area("Enter Text (Optional)", height=200)
19
+
20
+ question = st.text_input("Ask a Question")
21
+ bouton_ok = st.button("Answer")
22
+
23
+ if bouton_ok:
24
+ # Improved prompt for better context
25
+ context = document_text if document_text else "Empty document."
26
+ inputs = tokenizer.encode(f"Question: {question} Context: {context}", return_tensors='pt', max_length=512, truncation=True)
27
+ outputs = model.generate(inputs, max_length=150, min_length=80, length_penalty=5, num_beams=2)
28
+ summary = tokenizer.decode(outputs[0])
29
+ st.text("Answer:")
30
+ st.text(summary)