pszemraj's picture
⚡️ update inf params
a986525
raw
history blame
7.93 kB
import random
import gradio as gr
import torch
from gradio.themes.utils import sizes
from transformers import AutoModelForCausalLM, AutoTokenizer
import utils
from constants import END_OF_TEXT
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(
"BEE-spoke-data/smol_llama-101M-GQA-python",
use_fast=False,
)
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.pad_token = END_OF_TEXT
model = AutoModelForCausalLM.from_pretrained(
"BEE-spoke-data/smol_llama-101M-GQA-python",
device_map="auto",
)
model = torch.compile(model, mode="reduce-overhead")
# UI things
_styles = utils.get_file_as_string("styles.css")
# Loads ./README.md file & splits it into sections
readme_file_content = utils.get_file_as_string("README.md", path="./")
(
manifest,
description,
disclaimer,
base_model_info,
formats,
) = utils.get_sections(readme_file_content, "---", up_to=5)
theme = gr.themes.Soft(
primary_hue="yellow",
secondary_hue="orange",
neutral_hue="slate",
radius_size=sizes.radius_sm,
font=[
gr.themes.GoogleFont("IBM Plex Sans", [400, 600]),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
text_size=sizes.text_lg,
)
def run_inference(
prompt, temperature, max_new_tokens, top_p, repetition_penalty
) -> str:
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
do_sample=True,
early_stopping=True,
max_new_tokens=max_new_tokens,
min_new_tokens=8,
no_repeat_ngram_size=6,
num_beams=3,
renormalize_logits=True,
repetition_penalty=repetition_penalty,
temperature=temperature,
top_p=top_p,
)
text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return text
examples = [
["def add_numbers(a, b):\n return", 0.2, 96, 0.9, 1.2],
[
"class Car:\n def __init__(self, make, model):\n self.make = make\n self.model = model\n\n def display_car(self):",
0.2,
96,
0.9,
1.2,
],
[
"import pandas as pd\ndata = {'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19]}\ndf = pd.DataFrame(data).convert_dtypes()\n# eda",
0.2,
96,
0.9,
1.2,
],
[
"def factorial(n):\n if n == 0:\n return 1\n else:",
0.2,
96,
0.9,
1.2,
],
[
'def fibonacci(n):\n if n <= 0:\n raise ValueError("Incorrect input")\n elif n == 1:\n return 0\n elif n == 2:\n return 1\n else:',
0.2,
96,
0.9,
1.2,
],
[
"import matplotlib.pyplot as plt\nimport numpy as np\nx = np.linspace(0, 10, 100)\n# simple plot",
0.2,
96,
0.9,
1.2,
],
["def reverse_string(s:str) -> str:\n return", 0.2, 96, 0.9, 1.2],
["def is_palindrome(word:str) -> bool:\n return", 0.2, 96, 0.9, 1.2],
[
"def bubble_sort(lst: list):\n n = len(lst)\n for i in range(n):\n for j in range(0, n-i-1):",
0.2,
96,
0.9,
1.2,
],
[
"def binary_search(arr, low, high, x):\n if high >= low:\n mid = (high + low) // 2\n if arr[mid] == x:\n return mid\n elif arr[mid] > x:",
0.2,
96,
0.9,
1.2,
],
]
# Define the Gradio Blocks interface
with gr.Blocks(theme=theme, analytics_enabled=False, css=_styles) as demo:
with gr.Column():
gr.Markdown(description)
with gr.Row():
with gr.Column():
instruction = gr.Textbox(
value=random.choice([e[0] for e in examples]),
placeholder="Enter your code here",
label="Code",
elem_id="q-input",
)
submit = gr.Button("Generate", variant="primary")
output = gr.Code(elem_id="q-output", language="python", lines=10)
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced settings", open=False):
with gr.Row():
column_1, column_2 = gr.Column(), gr.Column()
with column_1:
temperature = gr.Slider(
label="Temperature",
value=0.2,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=64,
minimum=32,
maximum=512,
step=32,
interactive=True,
info="Number of tokens to generate",
)
with column_2:
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=1.1,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
with gr.Column():
version = gr.Dropdown(
[
"smol_llama-101M-GQA-python",
],
value="smol_llama-101M-GQA-python",
label="Version",
info="",
)
gr.Markdown(disclaimer)
gr.Examples(
examples=examples,
inputs=[
instruction,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
version,
],
cache_examples=False,
fn=run_inference,
outputs=[output],
)
gr.Markdown(base_model_info)
gr.Markdown(formats)
submit.click(
run_inference,
inputs=[
instruction,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
],
outputs=[output],
# preprocess=False,
# batch=False,
show_progress=True,
)
# .queue(max_size=10, api_open=False)
demo.launch(
debug=True,
show_api=False,
share=utils.is_google_colab(),
)