Spaces:
Sleeping
Sleeping
File size: 7,934 Bytes
8be6f3b e01a839 a986525 e01a839 a986525 e01a839 a986525 e01a839 a986525 e01a839 a986525 e01a839 a986525 e01a839 a986525 e01a839 a986525 e01a839 a986525 e01a839 a986525 e01a839 a986525 e01a839 a986525 e01a839 a986525 e01a839 a986525 e01a839 8be6f3b e01a839 8be6f3b e01a839 43e4710 e01a839 45d12c1 e01a839 fadbdc4 e01a839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import random
import gradio as gr
import torch
from gradio.themes.utils import sizes
from transformers import AutoModelForCausalLM, AutoTokenizer
import utils
from constants import END_OF_TEXT
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(
"BEE-spoke-data/smol_llama-101M-GQA-python",
use_fast=False,
)
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.pad_token = END_OF_TEXT
model = AutoModelForCausalLM.from_pretrained(
"BEE-spoke-data/smol_llama-101M-GQA-python",
device_map="auto",
)
model = torch.compile(model, mode="reduce-overhead")
# UI things
_styles = utils.get_file_as_string("styles.css")
# Loads ./README.md file & splits it into sections
readme_file_content = utils.get_file_as_string("README.md", path="./")
(
manifest,
description,
disclaimer,
base_model_info,
formats,
) = utils.get_sections(readme_file_content, "---", up_to=5)
theme = gr.themes.Soft(
primary_hue="yellow",
secondary_hue="orange",
neutral_hue="slate",
radius_size=sizes.radius_sm,
font=[
gr.themes.GoogleFont("IBM Plex Sans", [400, 600]),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
text_size=sizes.text_lg,
)
def run_inference(
prompt, temperature, max_new_tokens, top_p, repetition_penalty
) -> str:
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
do_sample=True,
early_stopping=True,
max_new_tokens=max_new_tokens,
min_new_tokens=8,
no_repeat_ngram_size=6,
num_beams=3,
renormalize_logits=True,
repetition_penalty=repetition_penalty,
temperature=temperature,
top_p=top_p,
)
text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return text
examples = [
["def add_numbers(a, b):\n return", 0.2, 96, 0.9, 1.2],
[
"class Car:\n def __init__(self, make, model):\n self.make = make\n self.model = model\n\n def display_car(self):",
0.2,
96,
0.9,
1.2,
],
[
"import pandas as pd\ndata = {'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19]}\ndf = pd.DataFrame(data).convert_dtypes()\n# eda",
0.2,
96,
0.9,
1.2,
],
[
"def factorial(n):\n if n == 0:\n return 1\n else:",
0.2,
96,
0.9,
1.2,
],
[
'def fibonacci(n):\n if n <= 0:\n raise ValueError("Incorrect input")\n elif n == 1:\n return 0\n elif n == 2:\n return 1\n else:',
0.2,
96,
0.9,
1.2,
],
[
"import matplotlib.pyplot as plt\nimport numpy as np\nx = np.linspace(0, 10, 100)\n# simple plot",
0.2,
96,
0.9,
1.2,
],
["def reverse_string(s:str) -> str:\n return", 0.2, 96, 0.9, 1.2],
["def is_palindrome(word:str) -> bool:\n return", 0.2, 96, 0.9, 1.2],
[
"def bubble_sort(lst: list):\n n = len(lst)\n for i in range(n):\n for j in range(0, n-i-1):",
0.2,
96,
0.9,
1.2,
],
[
"def binary_search(arr, low, high, x):\n if high >= low:\n mid = (high + low) // 2\n if arr[mid] == x:\n return mid\n elif arr[mid] > x:",
0.2,
96,
0.9,
1.2,
],
]
# Define the Gradio Blocks interface
with gr.Blocks(theme=theme, analytics_enabled=False, css=_styles) as demo:
with gr.Column():
gr.Markdown(description)
with gr.Row():
with gr.Column():
instruction = gr.Textbox(
value=random.choice([e[0] for e in examples]),
placeholder="Enter your code here",
label="Code",
elem_id="q-input",
)
submit = gr.Button("Generate", variant="primary")
output = gr.Code(elem_id="q-output", language="python", lines=10)
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced settings", open=False):
with gr.Row():
column_1, column_2 = gr.Column(), gr.Column()
with column_1:
temperature = gr.Slider(
label="Temperature",
value=0.2,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=64,
minimum=32,
maximum=512,
step=32,
interactive=True,
info="Number of tokens to generate",
)
with column_2:
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=1.1,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
with gr.Column():
version = gr.Dropdown(
[
"smol_llama-101M-GQA-python",
],
value="smol_llama-101M-GQA-python",
label="Version",
info="",
)
gr.Markdown(disclaimer)
gr.Examples(
examples=examples,
inputs=[
instruction,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
version,
],
cache_examples=False,
fn=run_inference,
outputs=[output],
)
gr.Markdown(base_model_info)
gr.Markdown(formats)
submit.click(
run_inference,
inputs=[
instruction,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
],
outputs=[output],
# preprocess=False,
# batch=False,
show_progress=True,
)
# .queue(max_size=10, api_open=False)
demo.launch(
debug=True,
show_api=False,
share=utils.is_google_colab(),
)
|