Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -28,156 +28,63 @@ import numpy as np
|
|
28 |
import threading
|
29 |
|
30 |
|
31 |
-
# Setup Neo4j
|
32 |
graph = Neo4jGraph(
|
33 |
url="neo4j+s://6457770f.databases.neo4j.io",
|
34 |
username="neo4j",
|
35 |
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
|
36 |
)
|
37 |
|
38 |
-
# Define
|
39 |
-
class Entities(BaseModel):
|
40 |
-
names: List[str] = Field(
|
41 |
-
..., description="All the person, organization, or business entities that appear in the text"
|
42 |
-
)
|
43 |
-
|
44 |
-
entity_prompt = ChatPromptTemplate.from_messages([
|
45 |
-
("system", "You are extracting organization and person entities from the text."),
|
46 |
-
("human", "Use the given format to extract information from the following input: {question}"),
|
47 |
-
])
|
48 |
-
|
49 |
-
chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
|
50 |
-
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
|
51 |
-
|
52 |
-
def remove_lucene_chars(input: str) -> str:
|
53 |
-
return input.translate(str.maketrans({
|
54 |
-
"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
|
55 |
-
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
|
56 |
-
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
|
57 |
-
";": r"\;", " ": r"\ "
|
58 |
-
}))
|
59 |
-
|
60 |
-
def generate_full_text_query(input: str) -> str:
|
61 |
-
full_text_query = ""
|
62 |
-
words = [el for el in remove_lucene_chars(input).split() if el]
|
63 |
-
for word in words[:-1]:
|
64 |
-
full_text_query += f" {word}~2 AND"
|
65 |
-
full_text_query += f" {words[-1]}~2"
|
66 |
-
return full_text_query.strip()
|
67 |
-
|
68 |
-
# Setup logging to a file to capture debug information
|
69 |
-
logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
70 |
-
|
71 |
-
def structured_retriever(question: str) -> str:
|
72 |
-
result = ""
|
73 |
-
entities = entity_chain.invoke({"question": question})
|
74 |
-
for entity in entities.names:
|
75 |
-
response = graph.query(
|
76 |
-
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
|
77 |
-
YIELD node,score
|
78 |
-
CALL {
|
79 |
-
WITH node
|
80 |
-
MATCH (node)-[r:!MENTIONS]->(neighbor)
|
81 |
-
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
|
82 |
-
UNION ALL
|
83 |
-
WITH node
|
84 |
-
MATCH (node)<-[r:!MENTIONS]-(neighbor)
|
85 |
-
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
|
86 |
-
}
|
87 |
-
RETURN output LIMIT 50
|
88 |
-
""",
|
89 |
-
{"query": generate_full_text_query(entity)},
|
90 |
-
)
|
91 |
-
result += "\n".join([el['output'] for el in response])
|
92 |
-
return result
|
93 |
-
|
94 |
-
def retriever_neo4j(question: str):
|
95 |
-
structured_data = structured_retriever(question)
|
96 |
-
logging.debug(f"Structured data: {structured_data}")
|
97 |
-
return structured_data
|
98 |
-
|
99 |
-
# Setup for condensing the follow-up questions
|
100 |
-
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
|
101 |
-
in its original language.
|
102 |
-
Chat History:
|
103 |
-
{chat_history}
|
104 |
-
Follow Up Input: {question}
|
105 |
-
Standalone question:"""
|
106 |
-
|
107 |
-
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
108 |
-
|
109 |
-
def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
|
110 |
-
buffer = []
|
111 |
-
for human, ai in chat_history:
|
112 |
-
buffer.append(HumanMessage(content=human))
|
113 |
-
buffer.append(AIMessage(content=ai))
|
114 |
-
return buffer
|
115 |
-
|
116 |
-
_search_query = RunnableBranch(
|
117 |
-
(
|
118 |
-
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
|
119 |
-
run_name="HasChatHistoryCheck"
|
120 |
-
),
|
121 |
-
RunnablePassthrough.assign(
|
122 |
-
chat_history=lambda x: _format_chat_history(x["chat_history"])
|
123 |
-
)
|
124 |
-
| CONDENSE_QUESTION_PROMPT
|
125 |
-
| ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
|
126 |
-
| StrOutputParser(),
|
127 |
-
),
|
128 |
-
RunnableLambda(lambda x: x["question"]),
|
129 |
-
)
|
130 |
-
|
131 |
-
|
132 |
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
|
133 |
Ask your question directly, and I'll provide a precise and quick,short and crisp response in a conversational way without any Greet.
|
134 |
{context}
|
135 |
-
Question: {question}
|
136 |
-
Answer:"""
|
137 |
|
|
|
|
|
138 |
|
|
|
|
|
139 |
qa_prompt = ChatPromptTemplate.from_template(template)
|
140 |
|
141 |
-
#
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
)
|
149 |
-
|
150 |
-
|
151 |
-
| StrOutputParser()
|
152 |
-
)
|
153 |
|
154 |
-
#
|
155 |
def get_response(question):
|
156 |
try:
|
157 |
-
|
|
|
|
|
|
|
158 |
except Exception as e:
|
159 |
return f"Error: {str(e)}"
|
160 |
|
161 |
-
|
162 |
-
|
163 |
# Function to generate audio with Eleven Labs TTS
|
164 |
def generate_audio_elevenlabs(text):
|
165 |
XI_API_KEY = os.environ['ELEVENLABS_API']
|
166 |
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
|
167 |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
168 |
-
headers = {
|
169 |
-
"Accept": "application/json",
|
170 |
-
"xi-api-key": XI_API_KEY
|
171 |
-
}
|
172 |
data = {
|
173 |
"text": str(text),
|
174 |
"model_id": "eleven_multilingual_v2",
|
175 |
-
"voice_settings": {
|
176 |
-
"stability": 1.0,
|
177 |
-
"similarity_boost": 0.0,
|
178 |
-
"style": 0.60,
|
179 |
-
"use_speaker_boost": False
|
180 |
-
}
|
181 |
}
|
182 |
response = requests.post(tts_url, headers=headers, json=data, stream=True)
|
183 |
if response.ok:
|
@@ -190,7 +97,7 @@ def generate_audio_elevenlabs(text):
|
|
190 |
else:
|
191 |
return None
|
192 |
|
193 |
-
# Define ASR model
|
194 |
model_id = 'openai/whisper-large-v3'
|
195 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
196 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
@@ -203,79 +110,34 @@ pipe_asr = pipeline(
|
|
203 |
tokenizer=processor.tokenizer,
|
204 |
feature_extractor=processor.feature_extractor,
|
205 |
max_new_tokens=128,
|
206 |
-
chunk_length_s=
|
207 |
batch_size=16,
|
208 |
torch_dtype=torch_dtype,
|
209 |
device=device,
|
210 |
-
return_timestamps=
|
211 |
)
|
212 |
|
213 |
-
#
|
214 |
-
def
|
215 |
-
|
216 |
-
sr, y = new_chunk[0], new_chunk[1]
|
217 |
-
except TypeError:
|
218 |
-
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
|
219 |
-
return stream, "", None
|
220 |
-
|
221 |
-
# Ensure y is not empty and is at least 1-dimensional
|
222 |
-
if y is None or len(y) == 0:
|
223 |
-
return stream, "", None
|
224 |
-
|
225 |
y = y.astype(np.float32)
|
226 |
max_abs_y = np.max(np.abs(y))
|
227 |
if max_abs_y > 0:
|
228 |
y = y / max_abs_y
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
full_text = result.get("text", "")
|
239 |
-
|
240 |
-
# Start a thread to reset the state after 10 seconds
|
241 |
-
threading.Thread(target=auto_reset_state).start()
|
242 |
-
|
243 |
-
return stream, full_text, full_text
|
244 |
-
|
245 |
-
# Define the Gradio interface
|
246 |
-
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
|
247 |
-
audio_input = gr.Audio(sources=["microphone"], type='numpy', streaming=True, label="Speak to Ask")
|
248 |
-
transcription_textbox = gr.Textbox(label="Transcription", interactive=False)
|
249 |
-
submit_voice_btn = gr.Button("Submit Voice")
|
250 |
-
clear_state_btn = gr.Button("Clear State")
|
251 |
-
audio_output = gr.Audio(label="Response Audio", type="filepath", autoplay=True, interactive=False)
|
252 |
-
|
253 |
-
# Initialize the stream as an empty array for the first input
|
254 |
-
stream = np.array([])
|
255 |
-
|
256 |
-
# Update the transcription text in real-time as the user speaks
|
257 |
-
audio_input.stream(
|
258 |
-
fn=lambda new_chunk: transcribe_function(stream, new_chunk),
|
259 |
-
inputs=audio_input,
|
260 |
-
outputs=[None, transcription_textbox, transcription_textbox]
|
261 |
-
)
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
# Handle the submission of the final transcribed text
|
269 |
-
submit_voice_btn.click(
|
270 |
-
fn=handle_submit,
|
271 |
-
inputs=transcription_textbox,
|
272 |
-
outputs=transcription_textbox
|
273 |
-
)
|
274 |
-
|
275 |
-
# Interaction for Clear State Button
|
276 |
-
clear_state_btn.click(
|
277 |
-
fn=lambda: "",
|
278 |
-
outputs=transcription_textbox
|
279 |
)
|
280 |
|
281 |
# Launch the Gradio interface
|
|
|
28 |
import threading
|
29 |
|
30 |
|
31 |
+
# Setup Neo4j
|
32 |
graph = Neo4jGraph(
|
33 |
url="neo4j+s://6457770f.databases.neo4j.io",
|
34 |
username="neo4j",
|
35 |
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
|
36 |
)
|
37 |
|
38 |
+
# Define a prompt template for generating responses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
|
40 |
Ask your question directly, and I'll provide a precise and quick,short and crisp response in a conversational way without any Greet.
|
41 |
{context}
|
|
|
|
|
42 |
|
43 |
+
Data:
|
44 |
+
{context}
|
45 |
|
46 |
+
User's question: {question}
|
47 |
+
Answer:"""
|
48 |
qa_prompt = ChatPromptTemplate.from_template(template)
|
49 |
|
50 |
+
# Chat model configuration
|
51 |
+
chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
|
52 |
+
|
53 |
+
# Function to generate a query for Neo4j and retrieve information
|
54 |
+
def generate_full_text_query(input: str) -> str:
|
55 |
+
return " ".join([f"{word}~2" for word in input.split()])
|
56 |
+
|
57 |
+
def retrieve_from_neo4j(question: str) -> str:
|
58 |
+
query = generate_full_text_query(question)
|
59 |
+
response = graph.query(
|
60 |
+
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
|
61 |
+
YIELD node, score
|
62 |
+
RETURN node.name AS name, node.description AS description LIMIT 5""",
|
63 |
+
{"query": query}
|
64 |
)
|
65 |
+
context = "\n".join([f"{el['name']}: {el['description']}" for el in response])
|
66 |
+
return context
|
|
|
|
|
67 |
|
68 |
+
# Function to generate the response using the prompt template and Neo4j data
|
69 |
def get_response(question):
|
70 |
try:
|
71 |
+
context = retrieve_from_neo4j(question)
|
72 |
+
prompt = qa_prompt.format_prompt(context=context, question=question)
|
73 |
+
response = chat_model(prompt.to_string())
|
74 |
+
return response
|
75 |
except Exception as e:
|
76 |
return f"Error: {str(e)}"
|
77 |
|
|
|
|
|
78 |
# Function to generate audio with Eleven Labs TTS
|
79 |
def generate_audio_elevenlabs(text):
|
80 |
XI_API_KEY = os.environ['ELEVENLABS_API']
|
81 |
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
|
82 |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
83 |
+
headers = {"Accept": "application/json", "xi-api-key": XI_API_KEY}
|
|
|
|
|
|
|
84 |
data = {
|
85 |
"text": str(text),
|
86 |
"model_id": "eleven_multilingual_v2",
|
87 |
+
"voice_settings": {"stability": 1.0, "similarity_boost": 0.0}
|
|
|
|
|
|
|
|
|
|
|
88 |
}
|
89 |
response = requests.post(tts_url, headers=headers, json=data, stream=True)
|
90 |
if response.ok:
|
|
|
97 |
else:
|
98 |
return None
|
99 |
|
100 |
+
# Define the ASR model with Whisper
|
101 |
model_id = 'openai/whisper-large-v3'
|
102 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
103 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
110 |
tokenizer=processor.tokenizer,
|
111 |
feature_extractor=processor.feature_extractor,
|
112 |
max_new_tokens=128,
|
113 |
+
chunk_length_s=15,
|
114 |
batch_size=16,
|
115 |
torch_dtype=torch_dtype,
|
116 |
device=device,
|
117 |
+
return_timestamps=True
|
118 |
)
|
119 |
|
120 |
+
# Define the function to transcribe audio and generate a response
|
121 |
+
def transcribe_and_respond(audio):
|
122 |
+
sr, y = audio[0], audio[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
y = y.astype(np.float32)
|
124 |
max_abs_y = np.max(np.abs(y))
|
125 |
if max_abs_y > 0:
|
126 |
y = y / max_abs_y
|
127 |
+
result = pipe_asr({"array": y, "sampling_rate": sr}, return_timestamps=False)
|
128 |
+
text = result.get("text", "")
|
129 |
+
response = get_response(text)
|
130 |
+
audio_path = generate_audio_elevenlabs(response)
|
131 |
+
return audio_path
|
132 |
+
|
133 |
+
with gr.Blocks() as demo:
|
134 |
+
audio_input = gr.Audio(sources=["microphone"], streaming=False, type='numpy', label="Speak to Ask")
|
135 |
+
audio_output = gr.Audio(label="Audio", type="filepath", autoplay=True, interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
audio_input.change(
|
138 |
+
fn=transcribe_and_respond,
|
139 |
+
inputs=audio_input,
|
140 |
+
outputs=audio_output,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
)
|
142 |
|
143 |
# Launch the Gradio interface
|