lixuejing commited on
Commit
ff205eb
·
1 Parent(s): 3a1ec19
Files changed (5) hide show
  1. app.py +312 -59
  2. src/about.py +21 -5
  3. src/display/utils.py +35 -7
  4. src/leaderboard/read_evals.py +30 -3
  5. src/populate.py +2 -0
app.py CHANGED
@@ -18,75 +18,204 @@ from src.display.utils import (
18
  COLS,
19
  EVAL_COLS,
20
  EVAL_TYPES,
 
21
  AutoEvalColumn,
22
  ModelType,
23
  fields,
24
  WeightType,
25
- Precision
 
26
  )
27
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
29
  from src.submission.submit import add_new_eval
30
-
 
 
 
 
 
31
 
32
  def restart_space():
33
  API.restart_space(repo_id=REPO_ID)
34
 
35
- ### Space initialisation
36
- try:
37
- print(EVAL_REQUESTS_PATH)
38
- snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
- )
41
- except Exception:
42
- restart_space()
43
- try:
44
- print(EVAL_RESULTS_PATH)
45
- snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
- )
48
- except Exception:
49
- restart_space()
50
-
51
-
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
-
54
- (
55
- finished_eval_queue_df,
56
- running_eval_queue_df,
57
- pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
-
60
- def init_leaderboard(dataframe):
61
- if dataframe is None or dataframe.empty:
62
- raise ValueError("Leaderboard DataFrame is empty or None.")
63
- return Leaderboard(
64
- value=dataframe,
65
- datatype=[c.type for c in fields(AutoEvalColumn)],
66
- select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
- label="Select Columns to Display:",
70
- ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
- hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
- filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
- ],
87
- bool_checkboxgroup_label="Hide models",
88
- interactive=False,
89
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
 
92
  demo = gr.Blocks(css=custom_css)
@@ -95,8 +224,132 @@ with demo:
95
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
 
97
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
  with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
102
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
@@ -201,4 +454,4 @@ with demo:
201
  scheduler = BackgroundScheduler()
202
  scheduler.add_job(restart_space, "interval", seconds=1800)
203
  scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
18
  COLS,
19
  EVAL_COLS,
20
  EVAL_TYPES,
21
+ TYPES,
22
  AutoEvalColumn,
23
  ModelType,
24
  fields,
25
  WeightType,
26
+ Precision,
27
+ NUMERIC_INTERVALS
28
  )
29
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
30
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
31
  from src.submission.submit import add_new_eval
32
+ #from src.tools.collections import update_collections
33
+ #from src.tools.plots import (
34
+ # create_metric_plot_obj,
35
+ # create_plot_df,
36
+ # create_scores_df,
37
+ #)
38
 
39
  def restart_space():
40
  API.restart_space(repo_id=REPO_ID)
41
 
42
+
43
+ def init_space():
44
+ print("begin init space")
45
+ ### Space initialisation
46
+ try:
47
+ print(EVAL_REQUESTS_PATH)
48
+ snapshot_download(
49
+ repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
50
+ )
51
+ except Exception:
52
+ restart_space()
53
+ try:
54
+ print(EVAL_RESULTS_PATH)
55
+ snapshot_download(
56
+ repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
57
+ )
58
+ except Exception:
59
+ restart_space()
60
+
61
+ #raw_data, original_df = get_leaderboard_df(
62
+ leaderboard_df = get_leaderboard_df(
63
+ results_path=EVAL_RESULTS_PATH,
64
+ requests_path=EVAL_REQUESTS_PATH,
65
+ #dynamic_path=DYNAMIC_INFO_FILE_PATH,
66
+ cols=COLS,
67
+ benchmark_cols=BENCHMARK_COLS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  )
69
+ #update_collections(original_df.copy())
70
+ #leaderboard_df = original_df.copy()
71
+
72
+ #plot_df = create_plot_df(create_scores_df(raw_data))
73
+
74
+ (
75
+ finished_eval_queue_df,
76
+ running_eval_queue_df,
77
+ pending_eval_queue_df,
78
+ ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
79
+
80
+ #return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
81
+ #leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
82
+ return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
83
+
84
+ leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
85
+
86
+
87
+ # Searching and filtering
88
+ def update_table(
89
+ hidden_df: pd.DataFrame,
90
+ columns: list,
91
+ type_query: list,
92
+ precision_query: str,
93
+ size_query: list,
94
+ hide_models: list,
95
+ query: str,
96
+ ):
97
+ filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
98
+ filtered_df = filter_queries(query, filtered_df)
99
+ df = select_columns(filtered_df, columns)
100
+ return df
101
+
102
+
103
+ def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
104
+ query = request.query_params.get("query") or ""
105
+ return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
106
+
107
+
108
+ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
109
+ return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
110
+
111
+
112
+ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
113
+ always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
114
+ dummy_col = [AutoEvalColumn.dummy.name]
115
+ #AutoEvalColumn.model_type_symbol.name,
116
+ #AutoEvalColumn.model.name,
117
+ # We use COLS to maintain sorting
118
+ filtered_df = df[
119
+ always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col
120
+ ]
121
+ return filtered_df
122
+
123
+
124
+ def filter_queries(query: str, filtered_df: pd.DataFrame):
125
+ """Added by Abishek"""
126
+ final_df = []
127
+ if query != "":
128
+ queries = [q.strip() for q in query.split(";")]
129
+ for _q in queries:
130
+ _q = _q.strip()
131
+ if _q != "":
132
+ temp_filtered_df = search_table(filtered_df, _q)
133
+ if len(temp_filtered_df) > 0:
134
+ final_df.append(temp_filtered_df)
135
+ if len(final_df) > 0:
136
+ filtered_df = pd.concat(final_df)
137
+ filtered_df = filtered_df.drop_duplicates(
138
+ subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
139
+ )
140
+
141
+ return filtered_df
142
+
143
+
144
+ def filter_models(
145
+ df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list
146
+ ) -> pd.DataFrame:
147
+ # Show all models
148
+ if "Private or deleted" in hide_models:
149
+ filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
150
+ else:
151
+ filtered_df = df
152
+
153
+ if "Contains a merge/moerge" in hide_models:
154
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
155
+
156
+ if "MoE" in hide_models:
157
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]
158
+
159
+ if "Flagged" in hide_models:
160
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
161
+
162
+ type_emoji = [t[0] for t in type_query]
163
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
164
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
165
+
166
+ numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
167
+ params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
168
+ mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
169
+ filtered_df = filtered_df.loc[mask]
170
+
171
+ return filtered_df
172
+
173
+ leaderboard_df = filter_models(
174
+ df=leaderboard_df,
175
+ type_query=[t.to_str(" : ") for t in ModelType],
176
+ size_query=list(NUMERIC_INTERVALS.keys()),
177
+ precision_query=[i.value.name for i in Precision],
178
+ hide_models=[], # Deleted, merges, flagged, MoEs
179
+ )
180
+
181
+ #LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
182
+ #
183
+ #(
184
+ # finished_eval_queue_df,
185
+ # running_eval_queue_df,
186
+ # pending_eval_queue_df,
187
+ #) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
188
+
189
+ #def init_leaderboard(dataframe):
190
+ # if dataframe is None or dataframe.empty:
191
+ # raise ValueError("Leaderboard DataFrame is empty or None.")
192
+ # return Leaderboard(
193
+ # value=dataframe,
194
+ # datatype=[c.type for c in fields(AutoEvalColumn)],
195
+ # select_columns=SelectColumns(
196
+ # default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
197
+ # cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
198
+ # label="Select Columns to Display:",
199
+ # ),
200
+ # search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
201
+ # hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
202
+ # filter_columns=[
203
+ # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
204
+ # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
205
+ # ColumnFilter(
206
+ # AutoEvalColumn.params.name,
207
+ # type="slider",
208
+ # min=0.01,
209
+ # max=150,
210
+ # label="Select the number of parameters (B)",
211
+ # ),
212
+ # ColumnFilter(
213
+ # AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
214
+ # ),
215
+ # ],
216
+ # bool_checkboxgroup_label="Hide models",
217
+ # interactive=False,
218
+ # )
219
 
220
 
221
  demo = gr.Blocks(css=custom_css)
 
224
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
225
 
226
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
227
+ with gr.TabItem("🏅 VLM Benchmark", elem_id="vlm-benchmark-tab-table", id=0):
228
+ #leaderboard = init_leaderboard(LEADERBOARD_DF)
229
+ with gr.Row():
230
+ with gr.Column():
231
+ with gr.Row():
232
+ search_bar = gr.Textbox(
233
+ placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
234
+ show_label=False,
235
+ elem_id="search-bar",
236
+ )
237
+ with gr.Row():
238
+ shown_columns = gr.CheckboxGroup(
239
+ choices=[
240
+ c.name
241
+ for c in fields(AutoEvalColumn)
242
+ if not c.hidden and not c.never_hidden and not c.dummy
243
+ ],
244
+ value=[
245
+ c.name
246
+ for c in fields(AutoEvalColumn)
247
+ if c.displayed_by_default and not c.hidden and not c.never_hidden
248
+ ],
249
+ label="Select columns to show",
250
+ elem_id="column-select",
251
+ interactive=True,
252
+ )
253
+ with gr.Row():
254
+ hide_models = gr.CheckboxGroup(
255
+ label="Hide models",
256
+ choices = ["Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"],
257
+ value=[],
258
+ interactive=True
259
+ )
260
+ with gr.Column(min_width=320):
261
+ #with gr.Box(elem_id="box-filter"):
262
+ filter_columns_type = gr.CheckboxGroup(
263
+ label="Model types",
264
+ choices=[t.to_str() for t in ModelType],
265
+ value=[t.to_str() for t in ModelType],
266
+ interactive=True,
267
+ elem_id="filter-columns-type",
268
+ )
269
+ filter_columns_precision = gr.CheckboxGroup(
270
+ label="Precision",
271
+ choices=[i.value.name for i in Precision],
272
+ value=[i.value.name for i in Precision],
273
+ interactive=True,
274
+ elem_id="filter-columns-precision",
275
+ )
276
+ filter_columns_size = gr.CheckboxGroup(
277
+ label="Model sizes (in billions of parameters)",
278
+ choices=list(NUMERIC_INTERVALS.keys()),
279
+ value=list(NUMERIC_INTERVALS.keys()),
280
+ interactive=True,
281
+ elem_id="filter-columns-size",
282
+ )
283
+
284
+ leaderboard_table = gr.components.Dataframe(
285
+ value=leaderboard_df[
286
+ [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
287
+ + shown_columns.value
288
+ + [AutoEvalColumn.dummy.name]
289
+ ],
290
+ headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
291
+ datatype=TYPES,
292
+ elem_id="leaderboard-table",
293
+ interactive=False,
294
+ visible=True,
295
+ #column_widths=["2%", "33%"]
296
+ )
297
+
298
+ # Dummy leaderboard for handling the case when the user uses backspace key
299
+ hidden_leaderboard_table_for_search = gr.components.Dataframe(
300
+ #value=original_df[COLS],
301
+ value=leaderboard_df[COLS],
302
+ headers=COLS,
303
+ datatype=TYPES,
304
+ visible=False,
305
+ )
306
+ search_bar.submit(
307
+ update_table,
308
+ [
309
+ hidden_leaderboard_table_for_search,
310
+ shown_columns,
311
+ filter_columns_type,
312
+ filter_columns_precision,
313
+ filter_columns_size,
314
+ hide_models,
315
+ search_bar,
316
+ ],
317
+ leaderboard_table,
318
+ )
319
+
320
+ # Define a hidden component that will trigger a reload only if a query parameter has been set
321
+ hidden_search_bar = gr.Textbox(value="", visible=False)
322
+ hidden_search_bar.change(
323
+ update_table,
324
+ [
325
+ hidden_leaderboard_table_for_search,
326
+ shown_columns,
327
+ filter_columns_type,
328
+ filter_columns_precision,
329
+ filter_columns_size,
330
+ hide_models,
331
+ search_bar,
332
+ ],
333
+ leaderboard_table,
334
+ )
335
+ # Check query parameter once at startup and update search bar + hidden component
336
+ demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
337
+
338
+ for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models]:
339
+ selector.change(
340
+ update_table,
341
+ [
342
+ hidden_leaderboard_table_for_search,
343
+ shown_columns,
344
+ filter_columns_type,
345
+ filter_columns_precision,
346
+ filter_columns_size,
347
+ hide_models,
348
+ search_bar,
349
+ ],
350
+ leaderboard_table,
351
+ queue=True,
352
+ )
353
 
354
  with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
355
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
 
454
  scheduler = BackgroundScheduler()
455
  scheduler.add_job(restart_space, "interval", seconds=1800)
456
  scheduler.start()
457
+ demo.queue(default_concurrency_limit=40).launch()
src/about.py CHANGED
@@ -12,8 +12,17 @@ class Task:
12
  # ---------------------------------------------------
13
  class Tasks(Enum):
14
  # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
 
 
 
 
 
 
 
 
 
17
 
18
  NUM_FEWSHOT = 0 # Change with your few shot
19
  # ---------------------------------------------------
@@ -21,13 +30,20 @@ NUM_FEWSHOT = 0 # Change with your few shot
21
 
22
 
23
  # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
25
 
26
  # What does your leaderboard evaluate?
 
27
  INTRODUCTION_TEXT = """
28
- Intro text
29
- """
 
30
 
 
 
 
 
 
31
  # Which evaluations are you running? how can people reproduce what you have?
32
  LLM_BENCHMARKS_TEXT = f"""
33
  ## How it works
 
12
  # ---------------------------------------------------
13
  class Tasks(Enum):
14
  # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
+ task0 = Task("cmmmu", "acc", "CMMMU")
16
+ task1 = Task("cmmu", "acc", "CMMU")
17
+ task2 = Task("cv_bench", "acc", "CV_Bench")
18
+ task3 = Task("hallusion_bench", "acc", "Hallusion_Bench")
19
+ task4 = Task("mmmu", "acc", "MMMU")
20
+ task5 = Task("mmmu_pro_standard", "acc", "MMMU_Pro_Standard")
21
+ task6 = Task("mmmu_pro_vision", "acc", "MMMU_Pro_Vision")
22
+ task7 = Task("ocrbench", "acc", "OCRBench")
23
+ task8 = Task("math_vision", "acc", "Math_Vision")
24
+ task9 = Task("cvbench", "acc", "CVBench")
25
+ task10 = Task("ciibench", "acc", "CIIBench")
26
 
27
  NUM_FEWSHOT = 0 # Change with your few shot
28
  # ---------------------------------------------------
 
30
 
31
 
32
  # Your leaderboard name
33
+ TITLE = """<h1 align="center" id="space-title">FlagEval-VLM Leaderboard</h1>"""
34
 
35
  # What does your leaderboard evaluate?
36
+
37
  INTRODUCTION_TEXT = """
38
+ FlagEval-VLM Leaderboard旨在跟踪、排名和评估VLM。本排行榜由FlagEval平台提供相应算力和运行环境。
39
+ 评估数据集是全部都是中文数据集以评估中文能力如需查看详情信息,请查阅‘关于’页面。
40
+ 如需对模型进行更全面的评测,可以登录 [FlagEval](https://flageval.baai.ac.cn/api/users/providers/hf)平台,体验更加完善的模型评测功能。
41
 
42
+ The FlagEval-VLM Leaderboard aims to track, rank, and evaluate VLMs. This leaderboard is powered by the FlagEval platform, providing corresponding computational resources and runtime environment.
43
+ The evaluation dataset consists entirely of Chinese data to assess Chinese language proficiency. For more detailed information, please refer to the 'About' page.
44
+ For a more comprehensive evaluation of the model, you can log in to the [FlagEval](https://flageval.baai.ac.cn/) to experience more refined model evaluation functionalities
45
+
46
+ """
47
  # Which evaluations are you running? how can people reproduce what you have?
48
  LLM_BENCHMARKS_TEXT = f"""
49
  ## How it works
src/display/utils.py CHANGED
@@ -19,6 +19,7 @@ class ColumnContent:
19
  displayed_by_default: bool
20
  hidden: bool = False
21
  never_hidden: bool = False
 
22
 
23
  ## Leaderboard columns
24
  auto_eval_column_dict = []
@@ -39,6 +40,11 @@ auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B
39
  auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
  auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
  auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
 
 
 
 
 
42
 
43
  # We use make dataclass to dynamically fill the scores from Tasks
44
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
@@ -54,6 +60,8 @@ class EvalQueueColumn: # Queue column
54
  status = ColumnContent("status", "str", True)
55
 
56
  ## All the model information that we might need
 
 
57
  @dataclass
58
  class ModelDetails:
59
  name: str
@@ -63,9 +71,9 @@ class ModelDetails:
63
 
64
  class ModelType(Enum):
65
  PT = ModelDetails(name="pretrained", symbol="🟢")
66
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
  Unknown = ModelDetails(name="", symbol="?")
70
 
71
  def to_str(self, separator=" "):
@@ -77,10 +85,10 @@ class ModelType(Enum):
77
  return ModelType.FT
78
  if "pretrained" in type or "🟢" in type:
79
  return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "" in type:
83
- return ModelType.IFT
84
  return ModelType.Unknown
85
 
86
  class WeightType(Enum):
@@ -91,6 +99,9 @@ class WeightType(Enum):
91
  class Precision(Enum):
92
  float16 = ModelDetails("float16")
93
  bfloat16 = ModelDetails("bfloat16")
 
 
 
94
  Unknown = ModelDetails("?")
95
 
96
  def from_str(precision):
@@ -98,13 +109,30 @@ class Precision(Enum):
98
  return Precision.float16
99
  if precision in ["torch.bfloat16", "bfloat16"]:
100
  return Precision.bfloat16
 
 
 
 
 
 
101
  return Precision.Unknown
102
 
103
  # Column selection
104
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
 
105
 
106
  EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
107
  EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
108
 
109
  BENCHMARK_COLS = [t.value.col_name for t in Tasks]
110
 
 
 
 
 
 
 
 
 
 
 
 
19
  displayed_by_default: bool
20
  hidden: bool = False
21
  never_hidden: bool = False
22
+ dummy: bool = False
23
 
24
  ## Leaderboard columns
25
  auto_eval_column_dict = []
 
40
  auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
41
  auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
42
  auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
43
+ auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
44
+ auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
45
+ auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
46
+ # Dummy column for the search bar (hidden by the custom CSS)
47
+ auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
48
 
49
  # We use make dataclass to dynamically fill the scores from Tasks
50
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
 
60
  status = ColumnContent("status", "str", True)
61
 
62
  ## All the model information that we might need
63
+
64
+
65
  @dataclass
66
  class ModelDetails:
67
  name: str
 
71
 
72
  class ModelType(Enum):
73
  PT = ModelDetails(name="pretrained", symbol="🟢")
74
+ FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="🔶")
75
+ chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="💬")
76
+ merges = ModelDetails(name="base merges and moerges", symbol="🤝")
77
  Unknown = ModelDetails(name="", symbol="?")
78
 
79
  def to_str(self, separator=" "):
 
85
  return ModelType.FT
86
  if "pretrained" in type or "🟢" in type:
87
  return ModelType.PT
88
+ if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "💬"]]):
89
+ return ModelType.chat
90
+ if "merge" in type or "🤝" in type:
91
+ return ModelType.merges
92
  return ModelType.Unknown
93
 
94
  class WeightType(Enum):
 
99
  class Precision(Enum):
100
  float16 = ModelDetails("float16")
101
  bfloat16 = ModelDetails("bfloat16")
102
+ qt_8bit = ModelDetails("8bit")
103
+ qt_4bit = ModelDetails("4bit")
104
+ qt_GPTQ = ModelDetails("GPTQ")
105
  Unknown = ModelDetails("?")
106
 
107
  def from_str(precision):
 
109
  return Precision.float16
110
  if precision in ["torch.bfloat16", "bfloat16"]:
111
  return Precision.bfloat16
112
+ if precision in ["8bit"]:
113
+ return Precision.qt_8bit
114
+ if precision in ["4bit"]:
115
+ return Precision.qt_4bit
116
+ if precision in ["GPTQ", "None"]:
117
+ return Precision.qt_GPTQ
118
  return Precision.Unknown
119
 
120
  # Column selection
121
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
122
+ TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
123
 
124
  EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
125
  EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
126
 
127
  BENCHMARK_COLS = [t.value.col_name for t in Tasks]
128
 
129
+ NUMERIC_INTERVALS = {
130
+ "?": pd.Interval(-1, 0, closed="right"),
131
+ "~1.5": pd.Interval(0, 2, closed="right"),
132
+ "~3": pd.Interval(2, 4, closed="right"),
133
+ "~7": pd.Interval(4, 9, closed="right"),
134
+ "~13": pd.Interval(9, 20, closed="right"),
135
+ "~35": pd.Interval(20, 45, closed="right"),
136
+ "~60": pd.Interval(45, 70, closed="right"),
137
+ "70+": pd.Interval(70, 10000, closed="right"),
138
+ }
src/leaderboard/read_evals.py CHANGED
@@ -31,6 +31,10 @@ class EvalResult:
31
  num_params: int = 0
32
  date: str = "" # submission date of request file
33
  still_on_hub: bool = False
 
 
 
 
34
 
35
  @classmethod
36
  def init_from_json_file(self, json_filepath):
@@ -104,12 +108,25 @@ class EvalResult:
104
  self.likes = request.get("likes", 0)
105
  self.num_params = request.get("params", 0)
106
  self.date = request.get("submitted_time", "")
 
 
107
  except Exception:
 
108
  print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
 
110
  def to_dict(self):
111
  """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
 
 
 
 
 
 
 
 
 
 
113
  data_dict = {
114
  "eval_name": self.eval_name, # not a column, just a save name,
115
  AutoEvalColumn.precision.name: self.precision.value.name,
@@ -118,20 +135,30 @@ class EvalResult:
118
  AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
  AutoEvalColumn.architecture.name: self.architecture,
120
  AutoEvalColumn.model.name: make_clickable_model(self.full_model),
 
121
  AutoEvalColumn.revision.name: self.revision,
122
  AutoEvalColumn.average.name: average,
123
  AutoEvalColumn.license.name: self.license,
124
  AutoEvalColumn.likes.name: self.likes,
125
  AutoEvalColumn.params.name: self.num_params,
126
  AutoEvalColumn.still_on_hub.name: self.still_on_hub,
 
 
 
127
  }
128
 
129
  for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
 
 
 
 
 
 
 
131
 
132
  return data_dict
133
 
134
-
135
  def get_request_file_for_model(requests_path, model_name, precision):
136
  """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
  request_files = os.path.join(
 
31
  num_params: int = 0
32
  date: str = "" # submission date of request file
33
  still_on_hub: bool = False
34
+ is_merge: bool = False
35
+ flagged: bool = False
36
+ status: str = "FINISHED"
37
+ tags: list = None
38
 
39
  @classmethod
40
  def init_from_json_file(self, json_filepath):
 
108
  self.likes = request.get("likes", 0)
109
  self.num_params = request.get("params", 0)
110
  self.date = request.get("submitted_time", "")
111
+ self.architecture = request.get("architectures", "Unknown")
112
+ self.status = request.get("status", "FAILED")
113
  except Exception:
114
+ self.status = "FAILED"
115
  print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
116
 
117
  def to_dict(self):
118
  """Converts the Eval Result to a dict compatible with our dataframe display"""
119
+ average = 0
120
+ nums = 0
121
+ for v in self.results.values():
122
+ if v is not None and v != 0:
123
+ average += v
124
+ nums += 1
125
+ if nums ==0:
126
+ average = 0
127
+ else:
128
+ average = average/nums
129
+
130
  data_dict = {
131
  "eval_name": self.eval_name, # not a column, just a save name,
132
  AutoEvalColumn.precision.name: self.precision.value.name,
 
135
  AutoEvalColumn.weight_type.name: self.weight_type.value.name,
136
  AutoEvalColumn.architecture.name: self.architecture,
137
  AutoEvalColumn.model.name: make_clickable_model(self.full_model),
138
+ AutoEvalColumn.dummy.name: self.full_model,
139
  AutoEvalColumn.revision.name: self.revision,
140
  AutoEvalColumn.average.name: average,
141
  AutoEvalColumn.license.name: self.license,
142
  AutoEvalColumn.likes.name: self.likes,
143
  AutoEvalColumn.params.name: self.num_params,
144
  AutoEvalColumn.still_on_hub.name: self.still_on_hub,
145
+ AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
146
+ AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
147
+ AutoEvalColumn.flagged.name: self.flagged
148
  }
149
 
150
  for task in Tasks:
151
+ #data_dict[task.value.col_name] = self.results.get(task.value.benchmark, 0)
152
+ if task.value.col_name != "CLCC-H":
153
+ data_dict[task.value.col_name] = self.results.get(task.value.benchmark, 0)
154
+ else:
155
+ if self.results.get(task.value.benchmark, 0) == 0:
156
+ data_dict[task.value.col_name] = "-"
157
+ else:
158
+ data_dict[task.value.col_name] = "%.2f" % self.results.get(task.value.benchmark, 0)
159
 
160
  return data_dict
161
 
 
162
  def get_request_file_for_model(requests_path, model_name, precision):
163
  """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
164
  request_files = os.path.join(
src/populate.py CHANGED
@@ -6,12 +6,14 @@ import pandas as pd
6
  from src.display.formatting import has_no_nan_values, make_clickable_model
7
  from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
  from src.leaderboard.read_evals import get_raw_eval_results
 
9
 
10
 
11
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
  """Creates a dataframe from all the individual experiment results"""
13
  raw_data = get_raw_eval_results(results_path, requests_path)
14
  all_data_json = [v.to_dict() for v in raw_data]
 
15
 
16
  df = pd.DataFrame.from_records(all_data_json)
17
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
 
6
  from src.display.formatting import has_no_nan_values, make_clickable_model
7
  from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
  from src.leaderboard.read_evals import get_raw_eval_results
9
+ from src.leaderboard.filter_models import filter_models_flags
10
 
11
 
12
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
13
  """Creates a dataframe from all the individual experiment results"""
14
  raw_data = get_raw_eval_results(results_path, requests_path)
15
  all_data_json = [v.to_dict() for v in raw_data]
16
+ filter_models_flags(all_data_json)
17
 
18
  df = pd.DataFrame.from_records(all_data_json)
19
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)