Spaces:
Running
on
Zero
Running
on
Zero
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_INPUT_LIMIT = 3584 | |
MAX_NEW_TOKENS = 1536 | |
MODEL_NAME = "Azure99/blossom-v5.1-9b" | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
def get_input_ids(inst, history): | |
prefix = ("A chat between a human and an artificial intelligence bot. " | |
"The bot gives helpful, detailed, and polite answers to the human's questions.") | |
patterns = [] | |
for conv in history: | |
patterns.append(f'\n|Human|: {conv[0]}\n|Bot|: ') | |
patterns.append(f'{conv[1]}') | |
patterns.append(f'\n|Human|: {inst}\n|Bot|: ') | |
patterns[0] = prefix + patterns[0] | |
input_ids = [] | |
for i, pattern in enumerate(patterns): | |
input_ids += tokenizer.encode(pattern, add_special_tokens=(i == 0)) | |
if i % 2 == 1: | |
input_ids += [tokenizer.eos_token_id] | |
return input_ids | |
def chat(inst, history, temperature, top_p, repetition_penalty): | |
with torch.no_grad(): | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
input_ids = get_input_ids(inst, history) | |
if len(input_ids) > MAX_INPUT_LIMIT: | |
yield "The input is too long, please clear the history." | |
return | |
generate_config = dict( | |
max_new_tokens=MAX_NEW_TOKENS, | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty | |
) | |
print(generate_config) | |
generation_kwargs = dict(input_ids=torch.tensor([input_ids]).to(model.device), do_sample=True, | |
streamer=streamer, **generate_config) | |
Thread(target=model.generate, kwargs=generation_kwargs).start() | |
outputs = "" | |
for new_text in streamer: | |
outputs += new_text | |
yield outputs | |
additional_inputs = [ | |
gr.Slider( | |
label="Temperature", | |
value=0.5, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Controls randomness in choosing words.", | |
), | |
gr.Slider( | |
label="Top-P", | |
value=0.85, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Picks words until their combined probability is at least top_p.", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.05, | |
minimum=1.0, | |
maximum=1.2, | |
step=0.01, | |
interactive=True, | |
info="Repetition Penalty: Controls how much repetition is penalized.", | |
) | |
] | |
gr.ChatInterface(chat, | |
chatbot=gr.Chatbot(show_label=False, height=500, show_copy_button=True, render_markdown=True), | |
textbox=gr.Textbox(placeholder="", container=False, scale=7), | |
title="Blossom 9B Demo", | |
description='Hello, I am Blossom, an open source conversational large language model.🌠' | |
'<a href="https://github.com/Azure99/BlossomLM">GitHub</a>', | |
theme="soft", | |
examples=[["Hello"], ["What is MBTI"], ["用Python实现二分查找"], ["为switch写一篇小红书种草文案,带上emoji"]], | |
additional_inputs=additional_inputs, | |
additional_inputs_accordion=gr.Accordion(label="Config", open=True), | |
clear_btn="🗑️Clear", | |
undo_btn="↩️Undo", | |
retry_btn="🔄Retry", | |
submit_btn="➡️Submit", | |
).queue().launch() | |