Blossom-9B-Demo / app.py
Azure99's picture
Update app.py
9f054c7 verified
raw
history blame
3.67 kB
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_INPUT_LIMIT = 3584
MAX_NEW_TOKENS = 1536
MODEL_NAME = "Azure99/blossom-v5.1-9b"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
def get_input_ids(inst, history):
prefix = ("A chat between a human and an artificial intelligence bot. "
"The bot gives helpful, detailed, and polite answers to the human's questions.")
patterns = []
for conv in history:
patterns.append(f'\n|Human|: {conv[0]}\n|Bot|: ')
patterns.append(f'{conv[1]}')
patterns.append(f'\n|Human|: {inst}\n|Bot|: ')
patterns[0] = prefix + patterns[0]
input_ids = []
for i, pattern in enumerate(patterns):
input_ids += tokenizer.encode(pattern, add_special_tokens=(i == 0))
if i % 2 == 1:
input_ids += [tokenizer.eos_token_id]
return input_ids
def generate(generation_kwargs):
with torch.no_grad():
Thread(target=model.generate, kwargs=generation_kwargs).start()
@spaces.GPU
def chat(inst, history, temperature, top_p, repetition_penalty):
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
input_ids = get_input_ids(inst, history)
if len(input_ids) > MAX_INPUT_LIMIT:
yield "The input is too long, please clear the history."
return
generation_kwargs = dict(input_ids=torch.tensor([input_ids]).to(model.device),
streamer=streamer, do_sample=True, max_new_tokens=MAX_NEW_TOKENS,
temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)
generate(generation_kwargs)
outputs = ""
for new_text in streamer:
outputs += new_text
yield outputs
additional_inputs = [
gr.Slider(
label="Temperature",
value=0.5,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Controls randomness in choosing words.",
),
gr.Slider(
label="Top-P",
value=0.85,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Picks words until their combined probability is at least top_p.",
),
gr.Slider(
label="Repetition penalty",
value=1.05,
minimum=1.0,
maximum=1.2,
step=0.01,
interactive=True,
info="Repetition Penalty: Controls how much repetition is penalized.",
)
]
gr.ChatInterface(chat,
chatbot=gr.Chatbot(show_label=False, height=500, show_copy_button=True, render_markdown=True),
textbox=gr.Textbox(placeholder="", container=False, scale=7),
title="Blossom 9B Demo",
description='Hello, I am Blossom, an open source conversational large language model.🌠'
'<a href="https://github.com/Azure99/BlossomLM">GitHub</a>',
theme="soft",
examples=[["Hello"], ["What is MBTI"], ["用Python实现二分查找"],
["为switch写一篇小红书种草文案,带上emoji"]],
additional_inputs=additional_inputs,
additional_inputs_accordion=gr.Accordion(label="Config", open=True),
clear_btn="🗑️Clear",
undo_btn="↩️Undo",
retry_btn="🔄Retry",
submit_btn="➡️Submit",
).queue().launch()