Spaces:
Sleeping
Sleeping
Ayush Shrivastava
commited on
Commit
•
0733338
1
Parent(s):
ab8a7de
Adding Model.Arch to app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,7 @@ from keras.models import Sequential
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
from keras.layers import Dense
|
10 |
import streamlit as st
|
|
|
11 |
|
12 |
|
13 |
|
@@ -43,7 +44,17 @@ def model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, it
|
|
43 |
y_hat = model.predict(X_test)
|
44 |
|
45 |
# Return model.
|
46 |
-
return y_hat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
|
49 |
if __name__ == '__main__':
|
@@ -85,6 +96,14 @@ if __name__ == '__main__':
|
|
85 |
# Split data into training and test sets.
|
86 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=split,random_state=42)
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
# Plotting the Prediction data.
|
89 |
# creating a container to display the graphs.
|
90 |
with st.container():
|
@@ -117,9 +136,6 @@ if __name__ == '__main__':
|
|
117 |
# Plotting the test data.
|
118 |
st.write('Test Data set')
|
119 |
|
120 |
-
# Predicting the test data.
|
121 |
-
y_hat = model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, iter)
|
122 |
-
|
123 |
fig2, ax2 = plt.subplots(1)
|
124 |
ax2.scatter(X_test, y_test, label='test',color='blue',alpha=0.4)
|
125 |
ax2.scatter(X_test, y_hat, label='prediction',c='red',alpha=0.6,edgecolors='black')
|
@@ -133,6 +149,7 @@ if __name__ == '__main__':
|
|
133 |
# write the graph to the app.
|
134 |
st.pyplot(fig2)
|
135 |
|
|
|
136 |
# Printing the Errors.
|
137 |
st.subheader('Errors')
|
138 |
|
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
from keras.layers import Dense
|
10 |
import streamlit as st
|
11 |
+
import io
|
12 |
|
13 |
|
14 |
|
|
|
44 |
y_hat = model.predict(X_test)
|
45 |
|
46 |
# Return model.
|
47 |
+
return y_hat, model
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
def get_model_summary(model):
|
52 |
+
stream = io.StringIO()
|
53 |
+
model.summary(print_fn=lambda x: stream.write(x + '\n'))
|
54 |
+
summary_string = stream.getvalue()
|
55 |
+
stream.close()
|
56 |
+
return summary_string
|
57 |
+
|
58 |
|
59 |
|
60 |
if __name__ == '__main__':
|
|
|
96 |
# Split data into training and test sets.
|
97 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=split,random_state=42)
|
98 |
|
99 |
+
# Predicting the test data.
|
100 |
+
y_hat,model = model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, iter)
|
101 |
+
|
102 |
+
# Printing Model Architecture.
|
103 |
+
st.subheader('Model Architecture')
|
104 |
+
# summary = get_model_summary(model)
|
105 |
+
st.write(model.summary(print_fn=lambda x: st.text(x)))
|
106 |
+
|
107 |
# Plotting the Prediction data.
|
108 |
# creating a container to display the graphs.
|
109 |
with st.container():
|
|
|
136 |
# Plotting the test data.
|
137 |
st.write('Test Data set')
|
138 |
|
|
|
|
|
|
|
139 |
fig2, ax2 = plt.subplots(1)
|
140 |
ax2.scatter(X_test, y_test, label='test',color='blue',alpha=0.4)
|
141 |
ax2.scatter(X_test, y_hat, label='prediction',c='red',alpha=0.6,edgecolors='black')
|
|
|
149 |
# write the graph to the app.
|
150 |
st.pyplot(fig2)
|
151 |
|
152 |
+
|
153 |
# Printing the Errors.
|
154 |
st.subheader('Errors')
|
155 |
|