Spaces:
Sleeping
Sleeping
File size: 4,517 Bytes
ceafa16 e90bc79 ceafa16 e90bc79 ceafa16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# import libraries.
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_regression
from keras.optimizers import SGD,Adam
from keras.models import Sequential
import matplotlib.pyplot as plt
from keras.layers import Dense
import streamlit as st
def model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, iter):
"""Creates a MLP model and return the predictions"""
# Define model.
model = Sequential()
# Adding first layers.
model.add(Dense(nodes, activation=activation, input_dim=X_train.shape[1]))
# Adding remaining hidden layers.
for i in range(layers-1):
model.add(Dense(nodes, activation=activation))
# Adding output layer.
model.add(Dense(1, activation='linear'))
# Choose optimizer.
if solver == 'adam':
opt = Adam(learning_rate=rate)
else:
opt = SGD(learning_rate=rate)
# Compile model.
model.compile(optimizer=opt,loss = 'mean_squared_error',metrics=['mean_squared_error'])
# Fit model.
model.fit(X_train, y_train, epochs=iter, verbose=0)
# Evaluate model.
y_hat = model.predict(X_test)
# Return model.
return y_hat
if __name__ == '__main__':
# Adding a title to the app.
st.title("Visualize MLPs")
# Adding a subtitle to the app.
st.subheader('MLP Parameters')
# Adding two columns to display the sliders for the parameters.
left_column, right_column = st.columns(2)
with left_column:
# slider for max iterations.
iter = st.slider('Max Iteration', min_value=100,max_value= 1000,value=500,step=10)
# slider for nodes per layer.
nodes = st.slider('Nodes', min_value=1,max_value= 10,value=5,step=1)
# slider for number of hidden layers.
layers = st.slider('Hidden Layers', min_value=1,max_value= 10,value=3,step=1)
# selectbox for activation function.
activation = st.selectbox('Activation',('linear','relu','sigmoid','tanh'),index=1)
with right_column:
# slider for adding noise.
noise = st.slider('Noise', min_value=0,max_value= 100,value=50,step=10)
# slider for test-train split.
split = st.slider('Test-Train Split', min_value=0.1,max_value= 0.9,value=0.3,step=0.1)
# selectbox for solver/optimizer.
solver = st.selectbox('Solver',('adam','sgd'),index=0)
# selectbox for learning rate.
rate = float(st.selectbox('Learning Rate',('0.001','0.003','0.01','0.03','0.1','0.3','1.0'),index=3))
# Generating regression data.
X, y = make_regression(n_samples=500, n_features=1, noise=noise,random_state=42,bias=3)
# Split data into training and test sets.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=split,random_state=42)
# Plotting the Prediction data.
# creating a container to display the graphs.
with st.container():
# Adding a subheader to the container.
st.subheader('Predictions')
# Adding two columns to display the graphs.
left_graph, right_graph = st.columns(2)
with left_graph:
# Plotting the training data.
st.write('Training Data set')
fig1, ax1 = plt.subplots(1)
ax1.scatter(X_train, y_train, label='train',color='blue',alpha=0.6,edgecolors='black')
# setting the labels and title of the graph.
ax1.set_xlabel('X')
ax1.set_ylabel('y')
ax1.set_title('Training Data set')
ax1.legend()
# write the graph to the app.
st.pyplot(fig1)
with right_graph:
# Plotting the test data.
st.write('Test Data set')
# Predicting the test data.
y_hat = model_MLP(X_train,y_train,X_test,layers, nodes, activation, solver, rate, iter)
fig2, ax2 = plt.subplots(1)
ax2.scatter(X_test, y_test, label='test',color='blue',alpha=0.4)
ax2.scatter(X_test, y_hat, label='prediction',c='red',alpha=0.6,edgecolors='black')
# setting the labels and title of the graph.
ax2.set_xlabel('X')
ax2.set_ylabel('y')
ax2.set_title('Test Data set')
ax2.legend()
# write the graph to the app.
st.pyplot(fig2) |