Ayushs799 commited on
Commit
fe2688d
1 Parent(s): 32eb178

Updated app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -5
app.py CHANGED
@@ -58,6 +58,12 @@ if __name__ == '__main__':
58
  st.header('Savitzky-Golay Filter : ')
59
  st.write('Savitzky-Golay smoothing filters are typically used to "smooth out" a noisy signal. They are also called digital smoothing polynomial filters or least-squares smoothing filters. Savitzky-Golay filters perform better in some applications than standard averaging FIR filters, which tend to filter high-frequency content along with the noise. Savitzky-Golay filters are more effective at preserving high frequency signal components but less successful at rejecting noise.Savitzky-Golay filters are optimal in the sense that they minimize the least-squares error in fitting a polynomial to frames of noisy data.')
60
 
 
 
 
 
 
 
61
  st.write('---')
62
 
63
 
@@ -83,7 +89,7 @@ if __name__ == '__main__':
83
  left,right = st.columns(2)
84
 
85
  with left:
86
- st.subheader('Detrending Parameters')
87
  window_size_dt = st.slider('*Window Size for Detrending*',min_value=1,max_value=100,value=20,step=1)
88
  st.write('Window size is the number of samples to be considered for detrending.')
89
  trend_type = st.selectbox('*Trend Type*',['linear','constant','Dont Remove'])
@@ -111,8 +117,8 @@ if __name__ == '__main__':
111
  left,right = st.columns(2)
112
 
113
  with left:
114
- st.subheader('Savitzky-Golay Filter Parameters')
115
- window_size_sg = st.slider('*Window Size for SG filter*',min_value=1,max_value=100,value=20,step=1)
116
  st.write('Window size is the number of samples to be considered for filtering.')
117
  order = st.slider('*Polynomial Order*',min_value=1,max_value=10,value=3,step=1)
118
  st.write('Order is the order of the polynomial to be fitted to the window of data.')
@@ -141,7 +147,7 @@ if __name__ == '__main__':
141
  left,right = st.columns(2)
142
 
143
  with left:
144
- st.subheader('Moving Average Filter Parameters')
145
  window_size_ma = st.slider('*Window Size for Moving Average filter*',min_value=1,max_value=100,value=20,step=1)
146
  st.write('Window size is the number of samples to be considered for filtering.')
147
 
@@ -168,7 +174,7 @@ if __name__ == '__main__':
168
  left,right = st.columns(2)
169
 
170
  with left:
171
- st.subheader('Gaussian Filter Parameters')
172
  sigma_gf = st.slider('*Sigma*',min_value=0.1,max_value=10.0,value=3.0,step=0.1)
173
  st.write('Sigma is the standard deviation for Gaussian kernel.')
174
 
@@ -196,3 +202,5 @@ if __name__ == '__main__':
196
  ax5.set_ylabel('Amplitude')
197
  ax5.set_title('Gaussian Filtered Signal')
198
  st.pyplot(fig5)
 
 
 
58
  st.header('Savitzky-Golay Filter : ')
59
  st.write('Savitzky-Golay smoothing filters are typically used to "smooth out" a noisy signal. They are also called digital smoothing polynomial filters or least-squares smoothing filters. Savitzky-Golay filters perform better in some applications than standard averaging FIR filters, which tend to filter high-frequency content along with the noise. Savitzky-Golay filters are more effective at preserving high frequency signal components but less successful at rejecting noise.Savitzky-Golay filters are optimal in the sense that they minimize the least-squares error in fitting a polynomial to frames of noisy data.')
60
 
61
+ st.header('Moving Average Filter : ')
62
+ st.write('The moving average is the most common filter in Signal Processing , mainly because it is the easiest digital filter to understand and use. The moving average filter is optimal for a common task: reducing random noise while retaining a sharp step response.This makes it the premier filter for time domain encoded signals.')
63
+
64
+ st.header('Gaussian Filter : ')
65
+ st.write('Gaussian filters are widely used for noise reduction due to their edge preserving properties. Gaussian filters are also used as smoothing filters. The Gaussian filter is a low-pass filter that removes the high-frequency components.')
66
+
67
  st.write('---')
68
 
69
 
 
89
  left,right = st.columns(2)
90
 
91
  with left:
92
+ st.subheader('Detrending')
93
  window_size_dt = st.slider('*Window Size for Detrending*',min_value=1,max_value=100,value=20,step=1)
94
  st.write('Window size is the number of samples to be considered for detrending.')
95
  trend_type = st.selectbox('*Trend Type*',['linear','constant','Dont Remove'])
 
117
  left,right = st.columns(2)
118
 
119
  with left:
120
+ st.subheader('Savitzky-Golay Filter')
121
+ window_size_sg = st.slider('*Window Size for Savitzky-Golay filter*',min_value=1,max_value=100,value=20,step=1)
122
  st.write('Window size is the number of samples to be considered for filtering.')
123
  order = st.slider('*Polynomial Order*',min_value=1,max_value=10,value=3,step=1)
124
  st.write('Order is the order of the polynomial to be fitted to the window of data.')
 
147
  left,right = st.columns(2)
148
 
149
  with left:
150
+ st.subheader('Moving Average Filter')
151
  window_size_ma = st.slider('*Window Size for Moving Average filter*',min_value=1,max_value=100,value=20,step=1)
152
  st.write('Window size is the number of samples to be considered for filtering.')
153
 
 
174
  left,right = st.columns(2)
175
 
176
  with left:
177
+ st.subheader('Gaussian Filter')
178
  sigma_gf = st.slider('*Sigma*',min_value=0.1,max_value=10.0,value=3.0,step=0.1)
179
  st.write('Sigma is the standard deviation for Gaussian kernel.')
180
 
 
202
  ax5.set_ylabel('Amplitude')
203
  ax5.set_title('Gaussian Filtered Signal')
204
  st.pyplot(fig5)
205
+
206
+ st.write('---')