Spaces:
Running
Running
File size: 11,316 Bytes
54f5afe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
"""Generation and evaluation of evals."""
from random import randint
from typing import ClassVar
import numpy as np
import pandas as pd
from pydantic import BaseModel, Field, field_validator
from sqlmodel import Session, func, select
from tqdm.auto import tqdm, trange
from raglite._config import RAGLiteConfig
from raglite._database import Chunk, Document, Eval, create_database_engine
from raglite._extract import extract_with_llm
from raglite._rag import rag
from raglite._search import hybrid_search, retrieve_segments, vector_search
from raglite._typing import SearchMethod
def insert_evals( # noqa: C901
*, num_evals: int = 100, max_contexts_per_eval: int = 20, config: RAGLiteConfig | None = None
) -> None:
"""Generate and insert evals into the database."""
class QuestionResponse(BaseModel):
"""A specific question about the content of a set of document contexts."""
question: str = Field(
...,
description="A specific question about the content of a set of document contexts.",
min_length=1,
)
system_prompt: ClassVar[str] = """
You are given a set of contexts extracted from a document.
You are a subject matter expert on the document's topic.
Your task is to generate a question to quiz other subject matter experts on the information in the provided context.
The question MUST satisfy ALL of the following criteria:
- The question SHOULD integrate as much of the provided context as possible.
- The question MUST NOT be a general or open question, but MUST instead be as specific to the provided context as possible.
- The question MUST be completely answerable using ONLY the information in the provided context, without depending on any background information.
- The question MUST be entirely self-contained and able to be understood in full WITHOUT access to the provided context.
- The question MUST NOT reference the existence of the context, directly or indirectly.
- The question MUST treat the context as if its contents are entirely part of your working memory.
""".strip()
@field_validator("question")
@classmethod
def validate_question(cls, value: str) -> str:
"""Validate the question."""
question = value.strip().lower()
if "context" in question or "document" in question or "question" in question:
raise ValueError
if not question.endswith("?"):
raise ValueError
return value
config = config or RAGLiteConfig()
engine = create_database_engine(config)
with Session(engine) as session:
for _ in trange(num_evals, desc="Generating evals", unit="eval", dynamic_ncols=True):
# Sample a random document from the database.
seed_document = session.exec(select(Document).order_by(func.random()).limit(1)).first()
if seed_document is None:
error_message = "First run `insert_document()` before generating evals."
raise ValueError(error_message)
# Sample a random chunk from that document.
seed_chunk = session.exec(
select(Chunk)
.where(Chunk.document_id == seed_document.id)
.order_by(func.random())
.limit(1)
).first()
if seed_chunk is None:
continue
# Expand the seed chunk into a set of related chunks.
related_chunk_ids, _ = vector_search(
np.mean(seed_chunk.embedding_matrix, axis=0, keepdims=True),
num_results=randint(2, max_contexts_per_eval // 2), # noqa: S311
config=config,
)
related_chunks = retrieve_segments(related_chunk_ids, config=config)
# Extract a question from the seed chunk's related chunks.
try:
question_response = extract_with_llm(
QuestionResponse, related_chunks, config=config
)
except ValueError:
continue
else:
question = question_response.question
# Search for candidate chunks to answer the generated question.
candidate_chunk_ids, _ = hybrid_search(
question, num_results=max_contexts_per_eval, config=config
)
candidate_chunks = [session.get(Chunk, chunk_id) for chunk_id in candidate_chunk_ids]
# Determine which candidate chunks are relevant to answer the generated question.
class ContextEvalResponse(BaseModel):
"""Indicate whether the provided context can be used to answer a given question."""
hit: bool = Field(
...,
description="True if the provided context contains (a part of) the answer to the given question, false otherwise.",
)
system_prompt: ClassVar[str] = f"""
You are given a context extracted from a document.
You are a subject matter expert on the document's topic.
Your task is to answer whether the provided context contains (a part of) the answer to this question: "{question}"
An example of a context that does NOT contain (a part of) the answer is a table of contents.
""".strip()
relevant_chunks = []
for candidate_chunk in tqdm(
candidate_chunks, desc="Evaluating chunks", unit="chunk", dynamic_ncols=True
):
try:
context_eval_response = extract_with_llm(
ContextEvalResponse, str(candidate_chunk), config=config
)
except ValueError: # noqa: PERF203
pass
else:
if context_eval_response.hit:
relevant_chunks.append(candidate_chunk)
if not relevant_chunks:
continue
# Answer the question using the relevant chunks.
class AnswerResponse(BaseModel):
"""Answer a question using the provided context."""
answer: str = Field(
...,
description="A complete answer to the given question using the provided context.",
min_length=1,
)
system_prompt: ClassVar[str] = f"""
You are given a set of contexts extracted from a document.
You are a subject matter expert on the document's topic.
Your task is to generate a complete answer to the following question using the provided context: "{question}"
The answer MUST satisfy ALL of the following criteria:
- The answer MUST integrate as much of the provided context as possible.
- The answer MUST be entirely self-contained and able to be understood in full WITHOUT access to the provided context.
- The answer MUST NOT reference the existence of the context, directly or indirectly.
- The answer MUST treat the context as if its contents are entirely part of your working memory.
""".strip()
try:
answer_response = extract_with_llm(
AnswerResponse,
[str(relevant_chunk) for relevant_chunk in relevant_chunks],
config=config,
)
except ValueError:
continue
else:
answer = answer_response.answer
# Store the eval in the database.
eval_ = Eval.from_chunks(
question=question,
contexts=relevant_chunks,
ground_truth=answer,
)
session.add(eval_)
session.commit()
def answer_evals(
num_evals: int = 100,
search: SearchMethod = hybrid_search,
*,
config: RAGLiteConfig | None = None,
) -> pd.DataFrame:
"""Read evals from the database and answer them with RAG."""
# Read evals from the database.
config = config or RAGLiteConfig()
engine = create_database_engine(config)
with Session(engine) as session:
evals = session.exec(select(Eval).limit(num_evals)).all()
# Answer evals with RAG.
answers: list[str] = []
contexts: list[list[str]] = []
for eval_ in tqdm(evals, desc="Answering evals", unit="eval", dynamic_ncols=True):
response = rag(eval_.question, search=search, config=config)
answer = "".join(response)
answers.append(answer)
chunk_ids, _ = search(eval_.question, config=config)
contexts.append(retrieve_segments(chunk_ids))
# Collect the answered evals.
answered_evals: dict[str, list[str] | list[list[str]]] = {
"question": [eval_.question for eval_ in evals],
"answer": answers,
"contexts": contexts,
"ground_truth": [eval_.ground_truth for eval_ in evals],
"ground_truth_contexts": [eval_.contexts for eval_ in evals],
}
answered_evals_df = pd.DataFrame.from_dict(answered_evals)
return answered_evals_df
def evaluate(
answered_evals: pd.DataFrame | int = 100,
config: RAGLiteConfig | None = None,
) -> pd.DataFrame:
"""Evaluate the performance of a set of answered evals with Ragas."""
try:
from datasets import Dataset
from langchain_community.chat_models import ChatLiteLLM
from langchain_community.embeddings import LlamaCppEmbeddings
from langchain_community.llms import LlamaCpp
from ragas import RunConfig
from ragas import evaluate as ragas_evaluate
from raglite._litellm import LlamaCppPythonLLM
except ImportError as import_error:
error_message = "To use the `evaluate` function, please install the `ragas` extra."
raise ImportError(error_message) from import_error
# Create a set of answered evals if not provided.
config = config or RAGLiteConfig()
answered_evals_df = (
answered_evals
if isinstance(answered_evals, pd.DataFrame)
else answer_evals(num_evals=answered_evals, config=config)
)
# Load the LLM.
if config.llm.startswith("llama-cpp-python"):
llm = LlamaCppPythonLLM().llm(model=config.llm)
lc_llm = LlamaCpp(
model_path=llm.model_path,
n_batch=llm.n_batch,
n_ctx=llm.n_ctx(),
n_gpu_layers=-1,
verbose=llm.verbose,
)
else:
lc_llm = ChatLiteLLM(model=config.llm) # type: ignore[call-arg]
# Load the embedder.
if not config.embedder.startswith("llama-cpp-python"):
error_message = "Currently, only `llama-cpp-python` embedders are supported."
raise NotImplementedError(error_message)
embedder = LlamaCppPythonLLM().llm(model=config.embedder, embedding=True)
lc_embedder = LlamaCppEmbeddings( # type: ignore[call-arg]
model_path=embedder.model_path,
n_batch=embedder.n_batch,
n_ctx=embedder.n_ctx(),
n_gpu_layers=-1,
verbose=embedder.verbose,
)
# Evaluate the answered evals with Ragas.
evaluation_df = ragas_evaluate(
dataset=Dataset.from_pandas(answered_evals_df),
llm=lc_llm,
embeddings=lc_embedder,
run_config=RunConfig(max_workers=1),
).to_pandas()
return evaluation_df
|