Awell00 commited on
Commit
10f7cab
·
verified ·
1 Parent(s): 46cbed5

feat: upload configs files for inference

Browse files
configs/config_bs_roformer_instrumental.yaml ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ audio:
2
+ chunk_size: 131584
3
+ dim_f: 1024
4
+ dim_t: 256
5
+ hop_length: 512
6
+ n_fft: 2048
7
+ num_channels: 2
8
+ sample_rate: 44100
9
+ min_mean_abs: 0.001
10
+
11
+ model:
12
+ dim: 384
13
+ depth: 12
14
+ stereo: true
15
+ num_stems: 1
16
+ time_transformer_depth: 1
17
+ freq_transformer_depth: 1
18
+ linear_transformer_depth: 0
19
+ freqs_per_bands: !!python/tuple
20
+ - 2
21
+ - 2
22
+ - 2
23
+ - 2
24
+ - 2
25
+ - 2
26
+ - 2
27
+ - 2
28
+ - 2
29
+ - 2
30
+ - 2
31
+ - 2
32
+ - 2
33
+ - 2
34
+ - 2
35
+ - 2
36
+ - 2
37
+ - 2
38
+ - 2
39
+ - 2
40
+ - 2
41
+ - 2
42
+ - 2
43
+ - 2
44
+ - 4
45
+ - 4
46
+ - 4
47
+ - 4
48
+ - 4
49
+ - 4
50
+ - 4
51
+ - 4
52
+ - 4
53
+ - 4
54
+ - 4
55
+ - 4
56
+ - 12
57
+ - 12
58
+ - 12
59
+ - 12
60
+ - 12
61
+ - 12
62
+ - 12
63
+ - 12
64
+ - 24
65
+ - 24
66
+ - 24
67
+ - 24
68
+ - 24
69
+ - 24
70
+ - 24
71
+ - 24
72
+ - 48
73
+ - 48
74
+ - 48
75
+ - 48
76
+ - 48
77
+ - 48
78
+ - 48
79
+ - 48
80
+ - 128
81
+ - 129
82
+ dim_head: 64
83
+ heads: 8
84
+ attn_dropout: 0.1
85
+ ff_dropout: 0.1
86
+ flash_attn: true
87
+ dim_freqs_in: 1025
88
+ stft_n_fft: 2048
89
+ stft_hop_length: 512
90
+ stft_win_length: 2048
91
+ stft_normalized: false
92
+ mask_estimator_depth: 2
93
+ multi_stft_resolution_loss_weight: 1.0
94
+ multi_stft_resolutions_window_sizes: !!python/tuple
95
+ - 4096
96
+ - 2048
97
+ - 1024
98
+ - 512
99
+ - 256
100
+ multi_stft_hop_size: 147
101
+ multi_stft_normalized: False
102
+
103
+ training:
104
+ batch_size: 4
105
+ gradient_accumulation_steps: 1
106
+ grad_clip: 0
107
+ instruments:
108
+ - vocals
109
+ - other
110
+ lr: 5.0e-05
111
+ patience: 2
112
+ reduce_factor: 0.95
113
+ target_instrument: other
114
+ num_epochs: 1000
115
+ num_steps: 1000
116
+ q: 0.95
117
+ coarse_loss_clip: true
118
+ ema_momentum: 0.999
119
+ optimizer: adam
120
+ other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
121
+ use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
122
+
123
+ augmentations:
124
+ enable: true # enable or disable all augmentations (to fast disable if needed)
125
+ loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
126
+ loudness_min: 0.5
127
+ loudness_max: 1.5
128
+ mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3)
129
+ mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02)
130
+ - 0.2
131
+ - 0.02
132
+ mixup_loudness_min: 0.5
133
+ mixup_loudness_max: 1.5
134
+
135
+ inference:
136
+ batch_size: 8
137
+ dim_t: 512
138
+ num_overlap: 2
configs/config_htdemucs_bass.yaml ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ audio:
2
+ chunk_size: 485100 # samplerate * segment
3
+ min_mean_abs: 0.001
4
+ hop_length: 1024
5
+
6
+ training:
7
+ batch_size: 8
8
+ gradient_accumulation_steps: 1
9
+ grad_clip: 0
10
+ segment: 11
11
+ shift: 1
12
+ samplerate: 44100
13
+ channels: 2
14
+ normalize: true
15
+ instruments: ['drums', 'bass', 'other', 'vocals']
16
+ target_instrument: null
17
+ num_epochs: 1000
18
+ num_steps: 1000
19
+ optimizer: adam
20
+ lr: 9.0e-05
21
+ patience: 2
22
+ reduce_factor: 0.95
23
+ q: 0.95
24
+ coarse_loss_clip: true
25
+ ema_momentum: 0.999
26
+ other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
27
+ use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
28
+
29
+ augmentations:
30
+ enable: true # enable or disable all augmentations (to fast disable if needed)
31
+ loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
32
+ loudness_min: 0.5
33
+ loudness_max: 1.5
34
+
35
+ inference:
36
+ num_overlap: 4
37
+ batch_size: 8
38
+
39
+ model: htdemucs
40
+
41
+ htdemucs: # see demucs/htdemucs.py for a detailed description
42
+ # Channels
43
+ channels: 48
44
+ channels_time:
45
+ growth: 2
46
+ # STFT
47
+ num_subbands: 1
48
+ nfft: 4096
49
+ wiener_iters: 0
50
+ end_iters: 0
51
+ wiener_residual: false
52
+ cac: true
53
+ # Main structure
54
+ depth: 4
55
+ rewrite: true
56
+ # Frequency Branch
57
+ multi_freqs: []
58
+ multi_freqs_depth: 3
59
+ freq_emb: 0.2
60
+ emb_scale: 10
61
+ emb_smooth: true
62
+ # Convolutions
63
+ kernel_size: 8
64
+ stride: 4
65
+ time_stride: 2
66
+ context: 1
67
+ context_enc: 0
68
+ # normalization
69
+ norm_starts: 4
70
+ norm_groups: 4
71
+ # DConv residual branch
72
+ dconv_mode: 3
73
+ dconv_depth: 2
74
+ dconv_comp: 8
75
+ dconv_init: 1e-3
76
+ # Before the Transformer
77
+ bottom_channels: 512
78
+ # CrossTransformer
79
+ # ------ Common to all
80
+ # Regular parameters
81
+ t_layers: 5
82
+ t_hidden_scale: 4.0
83
+ t_heads: 8
84
+ t_dropout: 0.0
85
+ t_layer_scale: True
86
+ t_gelu: True
87
+ # ------------- Positional Embedding
88
+ t_emb: sin
89
+ t_max_positions: 10000 # for the scaled embedding
90
+ t_max_period: 10000.0
91
+ t_weight_pos_embed: 1.0
92
+ t_cape_mean_normalize: True
93
+ t_cape_augment: True
94
+ t_cape_glob_loc_scale: [5000.0, 1.0, 1.4]
95
+ t_sin_random_shift: 0
96
+ # ------------- norm before a transformer encoder
97
+ t_norm_in: True
98
+ t_norm_in_group: False
99
+ # ------------- norm inside the encoder
100
+ t_group_norm: False
101
+ t_norm_first: True
102
+ t_norm_out: True
103
+ # ------------- optim
104
+ t_weight_decay: 0.0
105
+ t_lr:
106
+ # ------------- sparsity
107
+ t_sparse_self_attn: False
108
+ t_sparse_cross_attn: False
109
+ t_mask_type: diag
110
+ t_mask_random_seed: 42
111
+ t_sparse_attn_window: 400
112
+ t_global_window: 100
113
+ t_sparsity: 0.95
114
+ t_auto_sparsity: False
115
+ # Cross Encoder First (False)
116
+ t_cross_first: False
117
+ # Weight init
118
+ rescale: 0.1
119
+
configs/config_mel_band_roformer_denoise.yaml ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ audio:
2
+ chunk_size: 352800
3
+ dim_f: 1024
4
+ dim_t: 256
5
+ hop_length: 441
6
+ n_fft: 2048
7
+ num_channels: 2
8
+ sample_rate: 44100
9
+ min_mean_abs: 000
10
+
11
+ model:
12
+ dim: 384
13
+ depth: 6
14
+ stereo: true
15
+ num_stems: 1
16
+ time_transformer_depth: 1
17
+ freq_transformer_depth: 1
18
+ num_bands: 60
19
+ dim_head: 64
20
+ heads: 8
21
+ attn_dropout: 0
22
+ ff_dropout: 0
23
+ flash_attn: True
24
+ dim_freqs_in: 1025
25
+ sample_rate: 44100 # needed for mel filter bank from librosa
26
+ stft_n_fft: 2048
27
+ stft_hop_length: 441
28
+ stft_win_length: 2048
29
+ stft_normalized: False
30
+ mask_estimator_depth: 2
31
+ multi_stft_resolution_loss_weight: 1.0
32
+ multi_stft_resolutions_window_sizes: !!python/tuple
33
+ - 4096
34
+ - 2048
35
+ - 1024
36
+ - 512
37
+ - 256
38
+ multi_stft_hop_size: 147
39
+ multi_stft_normalized: False
40
+
41
+ training:
42
+ batch_size: 2
43
+ gradient_accumulation_steps: 1
44
+ grad_clip: 0
45
+ instruments:
46
+ - dry
47
+ - other
48
+ lr: 1.0e-05
49
+ patience: 8
50
+ reduce_factor: 0.95
51
+ target_instrument: dry
52
+ num_epochs: 1000
53
+ num_steps: 4032
54
+ augmentation: false # enable augmentations by audiomentations and pedalboard
55
+ augmentation_type: null
56
+ use_mp3_compress: false # Deprecated
57
+ augmentation_mix: false # Mix several stems of the same type with some probability
58
+ augmentation_loudness: false # randomly change loudness of each stem
59
+ augmentation_loudness_type: 1 # Type 1 or 2
60
+ augmentation_loudness_min: 0
61
+ augmentation_loudness_max: 0
62
+ q: 0.95
63
+ coarse_loss_clip: false
64
+ ema_momentum: 0.999
65
+ optimizer: adam
66
+ other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
67
+ use_amp: true
68
+
69
+ inference:
70
+ batch_size: 2
71
+ dim_t: 256
72
+ num_overlap: 4
configs/config_mel_band_roformer_vocals.yaml ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ audio:
2
+ chunk_size: 352800
3
+ dim_f: 1024
4
+ dim_t: 256
5
+ hop_length: 441
6
+ n_fft: 2048
7
+ num_channels: 2
8
+ sample_rate: 44100
9
+ min_mean_abs: 0.000
10
+
11
+ model:
12
+ dim: 384
13
+ depth: 6
14
+ stereo: true
15
+ num_stems: 1
16
+ time_transformer_depth: 1
17
+ freq_transformer_depth: 1
18
+ num_bands: 60
19
+ dim_head: 64
20
+ heads: 8
21
+ attn_dropout: 0
22
+ ff_dropout: 0
23
+ flash_attn: True
24
+ dim_freqs_in: 1025
25
+ sample_rate: 44100 # needed for mel filter bank from librosa
26
+ stft_n_fft: 2048
27
+ stft_hop_length: 441
28
+ stft_win_length: 2048
29
+ stft_normalized: False
30
+ mask_estimator_depth: 2
31
+ multi_stft_resolution_loss_weight: 1.0
32
+ multi_stft_resolutions_window_sizes: !!python/tuple
33
+ - 4096
34
+ - 2048
35
+ - 1024
36
+ - 512
37
+ - 256
38
+ multi_stft_hop_size: 147
39
+ multi_stft_normalized: False
40
+
41
+ training:
42
+ batch_size: 4
43
+ gradient_accumulation_steps: 1
44
+ grad_clip: 0
45
+ instruments:
46
+ - vocals
47
+ - other
48
+ lr: 1.0e-05
49
+ patience: 2
50
+ reduce_factor: 0.95
51
+ target_instrument: vocals
52
+ num_epochs: 1000
53
+ num_steps: 1000
54
+ augmentation: false # enable augmentations by audiomentations and pedalboard
55
+ augmentation_type: null
56
+ use_mp3_compress: false # Deprecated
57
+ augmentation_mix: false # Mix several stems of the same type with some probability
58
+ augmentation_loudness: false # randomly change loudness of each stem
59
+ augmentation_loudness_type: 1 # Type 1 or 2
60
+ augmentation_loudness_min: 0
61
+ augmentation_loudness_max: 0
62
+ q: 0.95
63
+ coarse_loss_clip: false
64
+ ema_momentum: 0.999
65
+ optimizer: adam
66
+ other_fix: true # it's needed for checking on multisong dataset if other is actually instrumental
67
+ use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
68
+
69
+ inference:
70
+ batch_size: 4
71
+ dim_t: 256
72
+ num_overlap: 2
configs/config_scnet_other.yaml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ audio:
2
+ chunk_size: 485100 # 44100 * 11
3
+ num_channels: 2
4
+ sample_rate: 44100
5
+ min_mean_abs: 0.000
6
+
7
+ model:
8
+ sources:
9
+ - drums
10
+ - bass
11
+ - other
12
+ - vocals
13
+ audio_channels: 2
14
+ dims:
15
+ - 4
16
+ - 32
17
+ - 64
18
+ - 128
19
+ nfft: 4096
20
+ hop_size: 1024
21
+ win_size: 4096
22
+ normalized: True
23
+ band_SR:
24
+ - 0.175
25
+ - 0.392
26
+ - 0.433
27
+ band_stride:
28
+ - 1
29
+ - 4
30
+ - 16
31
+ band_kernel:
32
+ - 3
33
+ - 4
34
+ - 16
35
+ conv_depths:
36
+ - 3
37
+ - 2
38
+ - 1
39
+ compress: 4
40
+ conv_kernel: 3
41
+ num_dplayer: 6
42
+ expand: 1
43
+
44
+ training:
45
+ batch_size: 10
46
+ gradient_accumulation_steps: 1
47
+ grad_clip: 0
48
+ instruments:
49
+ - drums
50
+ - bass
51
+ - other
52
+ - vocals
53
+ lr: 5.0e-04
54
+ patience: 2
55
+ reduce_factor: 0.95
56
+ target_instrument: null
57
+ num_epochs: 1000
58
+ num_steps: 1000
59
+ q: 0.95
60
+ coarse_loss_clip: true
61
+ ema_momentum: 0.999
62
+ optimizer: adam
63
+ other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
64
+ use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
65
+
66
+ augmentations:
67
+ enable: true # enable or disable all augmentations (to fast disable if needed)
68
+ loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
69
+ loudness_min: 0.5
70
+ loudness_max: 1.5
71
+ mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3)
72
+ mixup_probs:
73
+ !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02)
74
+ - 0.2
75
+ - 0.02
76
+ mixup_loudness_min: 0.5
77
+ mixup_loudness_max: 1.5
78
+
79
+ inference:
80
+ batch_size: 8
81
+ dim_t: 256
82
+ num_overlap: 4
83
+ normalize: true