File size: 8,855 Bytes
889d37b
 
 
 
 
 
 
 
 
 
 
ebb569b
889d37b
 
 
 
 
 
 
 
 
 
 
 
 
 
e883a9a
 
 
d34a5b4
d9d3a0c
 
e883a9a
 
 
 
d9d3a0c
 
e883a9a
 
d9d3a0c
889d37b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e883a9a
 
889d37b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb569b
e1ba51e
889d37b
e883a9a
ebb569b
e883a9a
 
 
 
 
e1ba51e
889d37b
 
 
 
 
 
ebb569b
889d37b
 
 
e883a9a
 
 
889d37b
e883a9a
889d37b
e883a9a
889d37b
 
 
 
 
 
 
 
 
 
 
 
 
e883a9a
889d37b
 
 
 
 
 
e883a9a
 
 
 
 
889d37b
e883a9a
889d37b
 
 
 
e883a9a
 
 
 
 
 
889d37b
 
e883a9a
889d37b
 
 
ebb569b
889d37b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import yt_dlp
import re
import subprocess
import os
import shutil
from pydub import AudioSegment
import gradio as gr
import traceback
import logging
from inference import proc_folder_direct
from pathlib import Path
from transformers import pipeline

OUTPUT_FOLDER = "separation_results/"
INPUT_FOLDER = "input"
download_path = ""

def sanitize_filename(filename):
    return re.sub(r'[\\/*?:"<>|]', '_', filename)

def delete_input_files(input_dir):
    wav_dir = Path(input_dir) / "wav"
    for wav_file in wav_dir.glob("*.wav"):
        wav_file.unlink()
        print(f"Deleted {wav_file}")

def handle_file_upload(file):
    if file is None:
        return None, "No file uploaded"

    filename = os.path.basename(file.name)
    formatted_title = sanitize_filename(Path(filename).stem)
    
    input_path = os.path.join(INPUT_FOLDER, "wav", f"{formatted_title}.wav")
    os.makedirs(os.path.dirname(input_path), exist_ok=True)
    
    # Copy the uploaded file to the input folder
    shutil.copy(file.name, input_path)
    
    return input_path, formatted_title
    
def run_inference(model_type, config_path, start_check_point, input_dir, output_dir, device_ids="0"):
    command = [
        "python", "inference.py",
        "--model_type", model_type,
        "--config_path", config_path,
        "--start_check_point", start_check_point,
        "--INPUT_FOLDER", input_dir,
        "--store_dir", output_dir,
        "--device_ids", device_ids
    ]
    return subprocess.run(command, check=True, capture_output=True, text=True)

def move_stems_to_parent(input_dir):
    for subdir, dirs, files in os.walk(input_dir):
        if subdir == input_dir:
            continue

        parent_dir = os.path.dirname(subdir)
        song_name = os.path.basename(parent_dir)

        if 'htdemucs' in subdir:
            print(f"Processing htdemucs in {subdir}")
            bass_path = os.path.join(subdir, f"{song_name}_bass.wav")
            if os.path.exists(bass_path):
                new_bass_path = os.path.join(parent_dir, "bass.wav")
                print(f"Moving {bass_path} to {new_bass_path}")
                shutil.move(bass_path, new_bass_path)
            else:
                print(f"Bass file not found: {bass_path}")
        elif 'mel_band_roformer' in subdir:
            print(f"Processing mel_band_roformer in {subdir}")
            vocals_path = os.path.join(subdir, f"{song_name}_vocals.wav")
            if os.path.exists(vocals_path):
                new_vocals_path = os.path.join(parent_dir, "vocals.wav")
                print(f"Moving {vocals_path} to {new_vocals_path}")
                shutil.move(vocals_path, new_vocals_path)
            else:
                print(f"Vocals file not found: {vocals_path}")
        elif 'scnet' in subdir:
            print(f"Processing scnet in {subdir}")
            other_path = os.path.join(subdir, f"{song_name}_other.wav")
            if os.path.exists(other_path):
                new_other_path = os.path.join(parent_dir, "other.wav")
                print(f"Moving {other_path} to {new_other_path}")
                shutil.move(other_path, new_other_path)
            else:
                print(f"Other file not found: {other_path}")
        elif 'bs_roformer' in subdir:
            print(f"Processing bs_roformer in {subdir}")
            instrumental_path = os.path.join(subdir, f"{song_name}_other.wav")
            if os.path.exists(instrumental_path):
                new_instrumental_path = os.path.join(parent_dir, "instrumental.wav")
                print(f"Moving {instrumental_path} to {new_instrumental_path}")
                shutil.move(instrumental_path, new_instrumental_path)
            else:
                print(f"Instrumental file not found: {instrumental_path}")

def combine_stems_for_all(input_dir):
    for subdir, _, _ in os.walk(input_dir):
        if subdir == input_dir:
            continue

        song_name = os.path.basename(subdir)
        print(f"Processing {subdir}")

        stem_paths = {
            "vocals": os.path.join(subdir, "vocals.wav"),
            "bass": os.path.join(subdir, "bass.wav"),
            "others": os.path.join(subdir, "other.wav"),
            "instrumental": os.path.join(subdir, "instrumental.wav")
        }

        if not all(os.path.exists(path) for path in stem_paths.values()):
            print(f"Skipping {subdir}, not all stems are present.")
            continue

        stems = {name: AudioSegment.from_file(path) for name, path in stem_paths.items()}
        combined = stems["vocals"].overlay(stems["bass"]).overlay(stems["others"]).overlay(stems["instrumental"])

        output_file = os.path.join(subdir, f"{song_name}.MDS.wav")
        combined.export(output_file, format="wav")
        print(f"Exported combined stems to {output_file}")

def delete_folders_and_files(input_dir):
    folders_to_delete = ['htdemucs', 'mel_band_roformer', 'scnet', 'bs_roformer']
    files_to_delete = ['bass.wav', 'vocals.wav', 'other.wav', 'instrumental.wav']

    for root, dirs, files in os.walk(input_dir, topdown=False):
        if root == input_dir:
            continue

        for folder in folders_to_delete:
            folder_path = os.path.join(root, folder)
            if os.path.isdir(folder_path):
                print(f"Deleting folder: {folder_path}")
                shutil.rmtree(folder_path)

        for file in files_to_delete:
            file_path = os.path.join(root, file)
            if os.path.isfile(file_path):
                print(f"Deleting file: {file_path}")
                os.remove(file_path)

    for root, dirs, files in os.walk(OUTPUT_FOLDER):
        for dir_name in dirs:
            if dir_name.endswith('_vocals'):
                dir_path = os.path.join(root, dir_name)
                print(f"Deleting folder: {dir_path}")
                shutil.rmtree(dir_path)

    print("Cleanup completed.")

@spaces.GPU(duration=300)  # Adjust the duration as needed
def process_audio(uploaded_file):
    try:
        yield "Processing audio...", None

        if uploaded_file:
            input_path, formatted_title = handle_file_upload(uploaded_file)
            if input_path is None:
                raise ValueError("File upload failed.")
        else:
            raise ValueError("Please upload a WAV file.")

        yield "Starting SCNet inference...", None
        proc_folder_direct("scnet", "configs/config_scnet_other.yaml", "results/model_scnet_other.ckpt", f"{INPUT_FOLDER}/wav", OUTPUT_FOLDER)

        yield "Starting Mel Band Roformer inference...", None
        proc_folder_direct("mel_band_roformer", "configs/config_mel_band_roformer_vocals.yaml", "results/model_mel_band_roformer_vocals.ckpt", f"{INPUT_FOLDER}/wav", OUTPUT_FOLDER, extract_instrumental=True)

        yield "Starting HTDemucs inference...", None
        proc_folder_direct("htdemucs", "configs/config_htdemucs_bass.yaml", "results/model_htdemucs_bass.th", f"{INPUT_FOLDER}/wav", OUTPUT_FOLDER)

        source_path = f'{OUTPUT_FOLDER}{formatted_title}/mel_band_roformer/{formatted_title}_instrumental.wav'
        destination_path = f'{OUTPUT_FOLDER}{formatted_title}/mel_band_roformer/{formatted_title}.wav'

        os.rename(source_path, destination_path)

        yield "Starting BS Roformer inference...", None
        proc_folder_direct("bs_roformer", "configs/config_bs_roformer_instrumental.yaml", "results/model_bs_roformer_instrumental.ckpt", f'{OUTPUT_FOLDER}{formatted_title}/mel_band_roformer', OUTPUT_FOLDER)

        yield "Moving input files...", None
        delete_input_files(INPUT_FOLDER)

        yield "Moving stems to parent...", None
        move_stems_to_parent(OUTPUT_FOLDER)

        yield "Combining stems...", None
        combine_stems_for_all(OUTPUT_FOLDER)

        yield "Cleaning up...", None
        delete_folders_and_files(OUTPUT_FOLDER)

        yield f"Audio processing completed successfully.", f'{OUTPUT_FOLDER}{formatted_title}/{formatted_title}.MDS.wav'
    except Exception as e:
        error_msg = f"An error occurred: {str(e)}\n{traceback.format_exc()}"
        logging.error(error_msg)
        yield error_msg, None

with gr.Blocks() as demo:
    gr.Markdown("# Music Player and Processor")

    file_upload = gr.File(label="Upload WAV file", file_types=[".wav"])

    audio_output = gr.Audio(label="Audio Player")

    process_button = gr.Button("Process Audio")

    log_output = gr.Textbox(label="Processing Log", interactive=False)
    processed_audio_output = gr.Audio(label="Processed Audio")

    file_upload.change(
        fn=lambda file: file.name if file else None,
        inputs=file_upload,
        outputs=audio_output
    )

    process_button.click(
        fn=process_audio,
        inputs=file_upload,
        outputs=[log_output, processed_audio_output],
        show_progress=True
    )

demo.launch()