Spaces:
Running
Running
import os | |
import tempfile | |
from typing import List, Callable | |
import gradio as gr | |
import pandas as pd | |
from autorag.data.parse import langchain_parse | |
from autorag.data.parse.base import _add_last_modified_datetime | |
from autorag.data.parse.llamaparse import llama_parse | |
from autorag.data.qa.schema import Raw | |
from autorag.utils import result_to_dataframe | |
from llama_index.llms.openai import OpenAI | |
from src.create import default_create, fast_create, advanced_create | |
from src.util import on_submit_openai_key, on_submit_llama_cloud_key, on_submit_upstage_key | |
def original_parse(fn: Callable, **kwargs): | |
result = fn(**kwargs) | |
result = _add_last_modified_datetime(result) | |
return result | |
def change_lang_choice(lang: str) -> str: | |
lang_dict = { | |
"English": "en", | |
"한국어": "ko", | |
"日本語": "ja" | |
} | |
return lang_dict[lang] | |
def change_visible_status_api_key(parse_method: str): | |
if parse_method == "llama-parse": | |
return gr.update(visible=True), gr.update(visible=False) | |
elif parse_method == "upstage🇰🇷": | |
return gr.update(visible=False), gr.update(visible=True) | |
else: | |
return gr.update(visible=False), gr.update(visible=False) | |
def run_parse(file_lists: List[str], parse_method: str, original_raw_df, progress=gr.Progress()): | |
# save an input file to a directory | |
progress(0.05) | |
langchain_parse_original = langchain_parse.__wrapped__ | |
if parse_method in ["pdfminer", "pdfplumber", "pypdfium2", "pypdf", "pymupdf"]: | |
raw_df: pd.DataFrame = original_parse(langchain_parse_original, | |
data_path_list=file_lists, parse_method=parse_method) | |
elif parse_method == "llama-parse": | |
llama_cloud_api_key = os.getenv("LLAMA_CLOUD_API_KEY") | |
if llama_cloud_api_key is None: | |
return "Please submit your Llama Cloud API key first.", original_raw_df | |
raw_df: pd.DataFrame = original_parse(llama_parse.__wrapped__, data_path_list=file_lists) | |
elif parse_method == "upstage🇰🇷": | |
upstage_api_key = os.getenv("UPSTAGE_API_KEY") | |
if upstage_api_key is None: | |
return "Please submit your Upstage API key first.", original_raw_df | |
raw_df: pd.DataFrame = original_parse(langchain_parse_original, | |
data_path_list=file_lists, parse_method="upstagedocumentparse") | |
else: | |
return "Unsupported parse method.", original_raw_df | |
progress(0.8) | |
return "Parsing Complete. Download at the bottom button.", raw_df | |
def run_chunk(use_existed_raw: bool, raw_df: pd.DataFrame, raw_file: str, chunk_method: str, chunk_size: int, chunk_overlap: int, | |
lang: str = "English", original_corpus_df = None, progress=gr.Progress()): | |
lang = change_lang_choice(lang) | |
if not use_existed_raw: | |
raw_df = pd.read_parquet(raw_file, engine="pyarrow") | |
raw_instance = Raw(raw_df) | |
if chunk_method in ["Token", "Sentence"]: | |
corpus = raw_instance.chunk("llama_index_chunk", chunk_method=chunk_method, chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap, add_file_name=lang) | |
elif chunk_method in ["Semantic"]: | |
corpus = raw_instance.chunk("llama_index_chunk", chunk_method="Semantic_llama_index", | |
embed_model="openai", breakpoint_percnetile_threshold=0.95, | |
add_file_name=lang) | |
elif chunk_method == "Recursive": | |
corpus = raw_instance.chunk("langchain_chunk", chunk_method="recursivecharacter", | |
add_file_name=lang, chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
else: | |
gr.Error("Unsupported chunk method.") | |
return "Unsupported chunk method.", original_corpus_df | |
progress(0.8) | |
return "Chunking Complete. Download at the bottom button.", corpus.data | |
def run_qa(use_existed_corpus: bool, corpus_df: pd.DataFrame, corpus_file: str, qa_method: str, | |
model_name: str, qa_cnt: int, batch_size: int, lang: str = "English", original_qa_df = None, | |
progress=gr.Progress()): | |
lang = change_lang_choice(lang) | |
if not use_existed_corpus: | |
corpus_df = pd.read_parquet(corpus_file, engine="pyarrow") | |
if os.getenv("OPENAI_API_KEY") is None: | |
gr.Error("Please submit your OpenAI API key first.") | |
return "Please submit your OpenAI API key first.", original_qa_df | |
if model_name is None: | |
gr.Error("Please select a model first.") | |
return "Please select a model first.", original_qa_df | |
llm = OpenAI(model=model_name) | |
if qa_method == "default": | |
qa = default_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size) | |
elif qa_method == "fast": | |
qa = fast_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size) | |
elif qa_method == "advanced": | |
qa = advanced_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size) | |
else: | |
gr.Error("Unsupported QA method.") | |
return "Unsupported QA method.", original_qa_df | |
return "QA Creation Complete. Download at the bottom button.", qa.data | |
def download_state(state: pd.DataFrame, change_name: str): | |
if state is None: | |
gr.Error("No data to download.") | |
return "" | |
with tempfile.TemporaryDirectory() as temp_dir: | |
filename = os.path.join(temp_dir, f"{change_name}.parquet") | |
state.to_parquet(filename, engine="pyarrow") | |
yield filename | |
with gr.Blocks(theme="earneleh/paris") as demo: | |
raw_df_state = gr.State() | |
corpus_df_state = gr.State() | |
qa_df_state = gr.State() | |
gr.HTML("<h1>AutoRAG Data Creation 🛠️</h1>") | |
with gr.Row(): | |
openai_key_textbox = gr.Textbox(label="Please input your OpenAI API key and press Enter.", type="password", | |
info="You can get your API key from https://platform.openai.com/account/api-keys\n\n" | |
"AutoRAG do not store your API key.", | |
autofocus=True) | |
api_key_status_box = gr.Textbox(label="OpenAI API status", value="Not Set", interactive=False) | |
lang_choice = gr.Radio(["English", "한국어", "日本語"], label="Language", | |
value="English", info="Choose Langauge. En, Ko, Ja are supported.", | |
interactive=True) | |
with gr.Row(visible=False) as llama_cloud_api_key_row: | |
llama_key_textbox = gr.Textbox(label="Please input your Llama Cloud API key and press Enter.", type="password", | |
info="You can get your API key from https://docs.cloud.llamaindex.ai/llamacloud/getting_started/api_key\n\n" | |
"AutoRAG do not store your API key.",) | |
llama_key_status_box = gr.Textbox(label="Llama Cloud API status", value="Not Set", interactive=False) | |
with gr.Row(visible=False) as upstage_api_key_row: | |
upstage_key_textbox = gr.Textbox(label="Please input your Upstage API key and press Enter.", type="password", | |
info="You can get your API key from https://upstage.ai/\n\n" | |
"AutoRAG do not store your API key.",) | |
upstage_key_status_box = gr.Textbox(label="Upstage API status", value="Not Set", interactive=False) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("## 1. Parse your PDF files\n\nUpload your pdf files and make it to raw.parquet.") | |
document_file_input = gr.File(label="Upload Files", type="filepath", file_count="multiple") | |
parse_choice = gr.Dropdown( | |
["pdfminer", "pdfplumber", "pypdfium2", "pypdf", "pymupdf", "llama-parse", "upstage🇰🇷"], | |
label="Parsing Method", info="Choose parsing method that you want") | |
parse_button = gr.Button(value="Run Parsing") | |
parse_status = gr.Textbox(value="Not Started", interactive=False) | |
raw_download_button = gr.DownloadButton(value=download_state, inputs=[raw_df_state, gr.State("raw")], | |
label="Download raw.parquet") | |
with gr.Column(scale=1): | |
gr.Markdown( | |
"## 2. Chunk your raw.parquet\n\nUse parsed raw.parquet or upload your own. It will make a corpus.parquet." | |
) | |
raw_file_input = gr.File(label="Upload raw.parquet", type="filepath", file_count="single", visible=False) | |
use_previous_raw_file = gr.Checkbox(label="Use previous raw.parquet", value=True) | |
chunk_choice = gr.Dropdown( | |
["Token", "Sentence", "Semantic", "Recursive"], | |
label="Chunking Method", info="Choose chunking method that you want") | |
chunk_size = gr.Slider(minimum=128, maximum=1024, step=128, label="Chunk Size", value=256) | |
chunk_overlap = gr.Slider(minimum=16, maximum=256, step=16, label="Chunk Overlap", value=32) | |
chunk_button = gr.Button(value="Run Chunking") | |
chunk_status = gr.Textbox(value="Not Started", interactive=False) | |
corpus_download_button = gr.DownloadButton(label="Download corpus.parquet", | |
value=download_state, inputs=[corpus_df_state, gr.State("corpus")]) | |
with gr.Column(scale=1): | |
gr.Markdown( | |
"## 3. Create QA dataset from your corpus.parquet\n\nQA dataset is essential to run AutoRAG. Upload corpus.parquet & select QA method and run.") | |
gr.HTML("<b style='color: red; background-color: black; font-weight: bold;'>Warning: QA Creation uses an OpenAI model, which can be costly. Start with a small batch to gauge expenses.</b>") | |
corpus_file_input = gr.File(label="Upload corpus.parquet", type="filepath", file_count="single", | |
visible=False) | |
use_previous_corpus_file = gr.Checkbox(label="Use previous corpus.parquet", value=True) | |
qa_choice = gr.Radio(["default", "fast", "advanced"], label="QA Method", | |
info="Choose QA method that you want") | |
model_choice = gr.Radio(["gpt-4o-mini", "gpt-4o"], label="Select model for data creation", | |
) | |
qa_cnt = gr.Slider(minimum=20, maximum=150, step=5, label="Number of QA pairs", value=80) | |
batch_size = gr.Slider(minimum=1, maximum=16, step=1, | |
label="Batch Size to OpenAI model. If there is an error, decrease this.", value=16) | |
run_qa_button = gr.Button(value="Run QA Creation") | |
qa_status = gr.Textbox(value="Not Started", interactive=False) | |
gr.Markdown("### Do you want to customize your QA dataset? Join a waitlist for AutoRAG data creation studio.") | |
gr.Button("Join Data Creation Studio Waitlist", link="https://tally.so/r/wdDo6N") | |
qa_download_button = gr.DownloadButton(label="Download qa.parquet", | |
value=download_state, inputs=[qa_df_state, gr.State("qa")]) | |
#================================================================================================# | |
# Logics | |
use_previous_raw_file.change(lambda x: gr.update(visible=not x), inputs=[use_previous_raw_file], | |
outputs=[raw_file_input]) | |
use_previous_corpus_file.change(lambda x: gr.update(visible=not x), inputs=[use_previous_corpus_file], | |
outputs=[corpus_file_input]) | |
openai_key_textbox.submit(on_submit_openai_key, inputs=[openai_key_textbox], outputs=api_key_status_box) | |
# Parsing | |
parse_button.click(run_parse, inputs=[document_file_input, parse_choice, raw_df_state], | |
outputs=[parse_status, raw_df_state]) | |
# Chunking | |
chunk_button.click(run_chunk, inputs=[use_previous_raw_file, raw_df_state, raw_file_input, chunk_choice, chunk_size, chunk_overlap, | |
lang_choice, corpus_df_state], | |
outputs=[chunk_status, corpus_df_state]) | |
# QA Creation | |
run_qa_button.click(run_qa, inputs=[use_previous_corpus_file, corpus_df_state, corpus_file_input, qa_choice, | |
model_choice, qa_cnt, batch_size, lang_choice, | |
qa_df_state], | |
outputs=[qa_status, qa_df_state]) | |
# API Key visibility | |
parse_choice.change(change_visible_status_api_key, inputs=[parse_choice], | |
outputs=[llama_cloud_api_key_row, upstage_api_key_row]) | |
llama_key_textbox.submit(on_submit_llama_cloud_key, inputs=[llama_key_textbox], outputs=llama_key_status_box) | |
upstage_key_textbox.submit(on_submit_upstage_key, inputs=[upstage_key_textbox], outputs=upstage_key_status_box) | |
# if __name__ == "__main__": | |
# demo.launch(share=False, debug=True) | |
demo.launch(share=False, debug=False) | |