Spaces:
Running
Running
File size: 11,576 Bytes
cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 55755d8 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 7420a95 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 5923c02 cf0997e 2a58fa0 cf0997e 5923c02 14d5ed1 cf0997e 6a7f3cc 5923c02 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 14d5ed1 cf0997e 55755d8 cf0997e 2ba4c18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
import tempfile
from typing import List, Callable
import gradio as gr
import pandas as pd
from autorag.data.parse import langchain_parse
from autorag.data.parse.base import _add_last_modified_datetime
from autorag.data.parse.llamaparse import llama_parse
from autorag.data.qa.schema import Raw
from autorag.utils import result_to_dataframe
from llama_index.llms.openai import OpenAI
from src.create import default_create, fast_create, advanced_create
from src.util import on_submit_openai_key, on_submit_llama_cloud_key, on_submit_upstage_key
@result_to_dataframe(["texts", "path", "page", "last_modified_datetime"])
def original_parse(fn: Callable, **kwargs):
result = fn(**kwargs)
result = _add_last_modified_datetime(result)
return result
def change_lang_choice(lang: str) -> str:
lang_dict = {
"English": "en",
"한국어": "ko",
"日本語": "ja"
}
return lang_dict[lang]
def change_visible_status_api_key(parse_method: str):
if parse_method == "llama-parse":
return gr.update(visible=True), gr.update(visible=False)
elif parse_method == "upstage🇰🇷":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False)
def run_parse(file_lists: List[str], parse_method: str, original_raw_df, progress=gr.Progress()):
# save an input file to a directory
progress(0.05)
langchain_parse_original = langchain_parse.__wrapped__
if parse_method in ["pdfminer", "pdfplumber", "pypdfium2", "pypdf", "pymupdf"]:
raw_df: pd.DataFrame = original_parse(langchain_parse_original,
data_path_list=file_lists, parse_method=parse_method)
elif parse_method == "llama-parse":
llama_cloud_api_key = os.getenv("LLAMA_CLOUD_API_KEY")
if llama_cloud_api_key is None:
return "Please submit your Llama Cloud API key first.", original_raw_df
raw_df: pd.DataFrame = original_parse(llama_parse.__wrapped__, data_path_list=file_lists)
elif parse_method == "upstage🇰🇷":
upstage_api_key = os.getenv("UPSTAGE_API_KEY")
if upstage_api_key is None:
return "Please submit your Upstage API key first.", original_raw_df
raw_df: pd.DataFrame = original_parse(langchain_parse_original,
data_path_list=file_lists, parse_method="upstagedocumentparse")
else:
return "Unsupported parse method.", original_raw_df
progress(0.8)
return "Parsing Complete. Download at the bottom button.", raw_df
def run_chunk(use_existed_raw: bool, raw_df: pd.DataFrame, raw_file: str, chunk_method: str, chunk_size: int, chunk_overlap: int,
lang: str = "English", original_corpus_df = None, progress=gr.Progress()):
lang = change_lang_choice(lang)
if not use_existed_raw:
raw_df = pd.read_parquet(raw_file, engine="pyarrow")
raw_instance = Raw(raw_df)
if chunk_method in ["Token", "Sentence"]:
corpus = raw_instance.chunk("llama_index_chunk", chunk_method=chunk_method, chunk_size=chunk_size,
chunk_overlap=chunk_overlap, add_file_name=lang)
elif chunk_method in ["Semantic"]:
corpus = raw_instance.chunk("llama_index_chunk", chunk_method="Semantic_llama_index",
embed_model="openai", breakpoint_percnetile_threshold=0.95,
add_file_name=lang)
elif chunk_method == "Recursive":
corpus = raw_instance.chunk("langchain_chunk", chunk_method="recursivecharacter",
add_file_name=lang, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
else:
gr.Error("Unsupported chunk method.")
return "Unsupported chunk method.", original_corpus_df
progress(0.8)
return "Chunking Complete. Download at the bottom button.", corpus.data
def run_qa(use_existed_corpus: bool, corpus_df: pd.DataFrame, corpus_file: str, qa_method: str,
model_name: str, qa_cnt: int, batch_size: int, lang: str = "English", original_qa_df = None,
progress=gr.Progress()):
lang = change_lang_choice(lang)
if not use_existed_corpus:
corpus_df = pd.read_parquet(corpus_file, engine="pyarrow")
if os.getenv("OPENAI_API_KEY") is None:
gr.Error("Please submit your OpenAI API key first.")
return "Please submit your OpenAI API key first.", original_qa_df
if model_name is None:
gr.Error("Please select a model first.")
return "Please select a model first.", original_qa_df
llm = OpenAI(model=model_name)
if qa_method == "default":
qa = default_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size)
elif qa_method == "fast":
qa = fast_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size)
elif qa_method == "advanced":
qa = advanced_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size)
else:
gr.Error("Unsupported QA method.")
return "Unsupported QA method.", original_qa_df
return "QA Creation Complete. Download at the bottom button.", qa.data
def download_state(state: pd.DataFrame, change_name: str):
if state is None:
gr.Error("No data to download.")
return ""
with tempfile.TemporaryDirectory() as temp_dir:
filename = os.path.join(temp_dir, f"{change_name}.parquet")
state.to_parquet(filename, engine="pyarrow")
yield filename
with gr.Blocks(theme="earneleh/paris") as demo:
raw_df_state = gr.State()
corpus_df_state = gr.State()
qa_df_state = gr.State()
gr.HTML("<h1>AutoRAG Data Creation 🛠️</h1>")
with gr.Row():
openai_key_textbox = gr.Textbox(label="Please input your OpenAI API key and press Enter.", type="password",
info="You can get your API key from https://platform.openai.com/account/api-keys\n\n"
"AutoRAG do not store your API key.",
autofocus=True)
api_key_status_box = gr.Textbox(label="OpenAI API status", value="Not Set", interactive=False)
lang_choice = gr.Radio(["English", "한국어", "日本語"], label="Language",
value="English", info="Choose Langauge. En, Ko, Ja are supported.",
interactive=True)
with gr.Row(visible=False) as llama_cloud_api_key_row:
llama_key_textbox = gr.Textbox(label="Please input your Llama Cloud API key and press Enter.", type="password",
info="You can get your API key from https://docs.cloud.llamaindex.ai/llamacloud/getting_started/api_key\n\n"
"AutoRAG do not store your API key.",)
llama_key_status_box = gr.Textbox(label="Llama Cloud API status", value="Not Set", interactive=False)
with gr.Row(visible=False) as upstage_api_key_row:
upstage_key_textbox = gr.Textbox(label="Please input your Upstage API key and press Enter.", type="password",
info="You can get your API key from https://upstage.ai/\n\n"
"AutoRAG do not store your API key.",)
upstage_key_status_box = gr.Textbox(label="Upstage API status", value="Not Set", interactive=False)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## 1. Parse your PDF files\n\nUpload your pdf files and make it to raw.parquet.")
document_file_input = gr.File(label="Upload Files", type="filepath", file_count="multiple")
parse_choice = gr.Dropdown(
["pdfminer", "pdfplumber", "pypdfium2", "pypdf", "pymupdf", "llama-parse", "upstage🇰🇷"],
label="Parsing Method", info="Choose parsing method that you want")
parse_button = gr.Button(value="Run Parsing")
parse_status = gr.Textbox(value="Not Started", interactive=False)
raw_download_button = gr.DownloadButton(value=download_state, inputs=[raw_df_state, gr.State("raw")],
label="Download raw.parquet")
with gr.Column(scale=1):
gr.Markdown(
"## 2. Chunk your raw.parquet\n\nUse parsed raw.parquet or upload your own. It will make a corpus.parquet."
)
raw_file_input = gr.File(label="Upload raw.parquet", type="filepath", file_count="single", visible=False)
use_previous_raw_file = gr.Checkbox(label="Use previous raw.parquet", value=True)
chunk_choice = gr.Dropdown(
["Token", "Sentence", "Semantic", "Recursive"],
label="Chunking Method", info="Choose chunking method that you want")
chunk_size = gr.Slider(minimum=128, maximum=1024, step=128, label="Chunk Size", value=256)
chunk_overlap = gr.Slider(minimum=16, maximum=256, step=16, label="Chunk Overlap", value=32)
chunk_button = gr.Button(value="Run Chunking")
chunk_status = gr.Textbox(value="Not Started", interactive=False)
corpus_download_button = gr.DownloadButton(label="Download corpus.parquet",
value=download_state, inputs=[corpus_df_state, gr.State("corpus")])
with gr.Column(scale=1):
gr.Markdown(
"## 3. Create QA dataset from your corpus.parquet\n\nQA dataset is essential to run AutoRAG. Upload corpus.parquet & select QA method and run.")
gr.HTML("<b style='color: red; background-color: black; font-weight: bold;'>Warning: QA Creation uses an OpenAI model, which can be costly. Start with a small batch to gauge expenses.</b>")
corpus_file_input = gr.File(label="Upload corpus.parquet", type="filepath", file_count="single",
visible=False)
use_previous_corpus_file = gr.Checkbox(label="Use previous corpus.parquet", value=True)
qa_choice = gr.Radio(["default", "fast", "advanced"], label="QA Method",
info="Choose QA method that you want")
model_choice = gr.Radio(["gpt-4o-mini", "gpt-4o"], label="Select model for data creation",
)
qa_cnt = gr.Slider(minimum=20, maximum=150, step=5, label="Number of QA pairs", value=80)
batch_size = gr.Slider(minimum=1, maximum=16, step=1,
label="Batch Size to OpenAI model. If there is an error, decrease this.", value=16)
run_qa_button = gr.Button(value="Run QA Creation")
qa_status = gr.Textbox(value="Not Started", interactive=False)
gr.Markdown("### Do you want to customize your QA dataset? Join a waitlist for AutoRAG data creation studio.")
gr.Button("Join Data Creation Studio Waitlist", link="https://tally.so/r/wdDo6N")
qa_download_button = gr.DownloadButton(label="Download qa.parquet",
value=download_state, inputs=[qa_df_state, gr.State("qa")])
#================================================================================================#
# Logics
use_previous_raw_file.change(lambda x: gr.update(visible=not x), inputs=[use_previous_raw_file],
outputs=[raw_file_input])
use_previous_corpus_file.change(lambda x: gr.update(visible=not x), inputs=[use_previous_corpus_file],
outputs=[corpus_file_input])
openai_key_textbox.submit(on_submit_openai_key, inputs=[openai_key_textbox], outputs=api_key_status_box)
# Parsing
parse_button.click(run_parse, inputs=[document_file_input, parse_choice, raw_df_state],
outputs=[parse_status, raw_df_state])
# Chunking
chunk_button.click(run_chunk, inputs=[use_previous_raw_file, raw_df_state, raw_file_input, chunk_choice, chunk_size, chunk_overlap,
lang_choice, corpus_df_state],
outputs=[chunk_status, corpus_df_state])
# QA Creation
run_qa_button.click(run_qa, inputs=[use_previous_corpus_file, corpus_df_state, corpus_file_input, qa_choice,
model_choice, qa_cnt, batch_size, lang_choice,
qa_df_state],
outputs=[qa_status, qa_df_state])
# API Key visibility
parse_choice.change(change_visible_status_api_key, inputs=[parse_choice],
outputs=[llama_cloud_api_key_row, upstage_api_key_row])
llama_key_textbox.submit(on_submit_llama_cloud_key, inputs=[llama_key_textbox], outputs=llama_key_status_box)
upstage_key_textbox.submit(on_submit_upstage_key, inputs=[upstage_key_textbox], outputs=upstage_key_status_box)
# if __name__ == "__main__":
# demo.launch(share=False, debug=True)
demo.launch(share=False, debug=False)
|