Spaces:
Running
Running
jeffrey
commited on
Commit
·
14d5ed1
1
Parent(s):
77c3530
Delete data persistent on the huggingface space
Browse files
app.py
CHANGED
@@ -1,25 +1,24 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
from typing import List
|
4 |
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
from autorag.data.parse import langchain_parse
|
|
|
8 |
from autorag.data.parse.llamaparse import llama_parse
|
9 |
from autorag.data.qa.schema import Raw
|
|
|
10 |
from llama_index.llms.openai import OpenAI
|
11 |
|
12 |
from src.create import default_create, fast_create, advanced_create
|
13 |
from src.util import on_submit_openai_key, on_submit_llama_cloud_key, on_submit_upstage_key
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
if not os.path.exists(DATA_DIR):
|
21 |
-
os.makedirs(DATA_DIR)
|
22 |
-
|
23 |
|
24 |
def change_lang_choice(lang: str) -> str:
|
25 |
lang_dict = {
|
@@ -39,43 +38,38 @@ def change_visible_status_api_key(parse_method: str):
|
|
39 |
|
40 |
|
41 |
|
42 |
-
def run_parse(file_lists: List[str], parse_method: str, progress=gr.Progress()):
|
43 |
# save an input file to a directory
|
44 |
-
|
45 |
-
shutil.copy(file_path, FILE_DIR)
|
46 |
progress(0.05)
|
|
|
47 |
|
48 |
if parse_method in ["pdfminer", "pdfplumber", "pypdfium2", "pypdf", "pymupdf"]:
|
49 |
-
raw_df: pd.DataFrame =
|
|
|
50 |
elif parse_method == "llama-parse":
|
51 |
llama_cloud_api_key = os.getenv("LLAMA_CLOUD_API_KEY")
|
52 |
if llama_cloud_api_key is None:
|
53 |
-
return "Please submit your Llama Cloud API key first."
|
54 |
-
raw_df: pd.DataFrame = llama_parse
|
55 |
elif parse_method == "upstage🇰🇷":
|
56 |
upstage_api_key = os.getenv("UPSTAGE_API_KEY")
|
57 |
if upstage_api_key is None:
|
58 |
-
return "Please submit your Upstage API key first."
|
59 |
-
raw_df: pd.DataFrame =
|
|
|
60 |
else:
|
61 |
-
return "Unsupported parse method."
|
62 |
progress(0.8)
|
63 |
|
64 |
-
|
65 |
-
return "Parsing Complete. Download at the bottom button."
|
66 |
|
67 |
|
68 |
-
def run_chunk(use_existed_raw: bool, raw_file: str, chunk_method: str, chunk_size: int, chunk_overlap: int,
|
69 |
-
lang: str = "English", progress=gr.Progress()):
|
70 |
lang = change_lang_choice(lang)
|
71 |
-
if use_existed_raw:
|
72 |
-
|
73 |
-
else:
|
74 |
-
raw_df_path = raw_file
|
75 |
-
|
76 |
-
if not os.path.exists(raw_df_path):
|
77 |
-
return "Please upload raw.parquet file first. Or run the parsing stage first."
|
78 |
-
raw_df = pd.read_parquet(raw_df_path, engine="pyarrow")
|
79 |
raw_instance = Raw(raw_df)
|
80 |
|
81 |
if chunk_method in ["Token", "Sentence"]:
|
@@ -90,28 +84,21 @@ def run_chunk(use_existed_raw: bool, raw_file: str, chunk_method: str, chunk_siz
|
|
90 |
add_file_name=lang, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
91 |
else:
|
92 |
gr.Error("Unsupported chunk method.")
|
93 |
-
return "Unsupported chunk method."
|
94 |
progress(0.8)
|
95 |
-
|
96 |
-
return "Chunking Complete. Download at the bottom button."
|
97 |
|
98 |
|
99 |
-
def run_qa(use_existed_corpus: bool, corpus_file: str, qa_method: str,
|
100 |
-
model_name: str, qa_cnt: int, batch_size: int, lang: str = "English",
|
|
|
101 |
lang = change_lang_choice(lang)
|
102 |
-
if use_existed_corpus:
|
103 |
-
|
104 |
-
else:
|
105 |
-
corpus_df_path = corpus_file
|
106 |
-
|
107 |
-
if not os.path.exists(corpus_df_path):
|
108 |
-
gr.Error("Please upload corpus.parquet file first. Or run the chunking stage first.")
|
109 |
-
return "Please upload corpus.parquet file first. Or run the chunking stage first."
|
110 |
-
corpus_df = pd.read_parquet(corpus_df_path, engine="pyarrow")
|
111 |
|
112 |
if os.getenv("OPENAI_API_KEY") is None:
|
113 |
gr.Error("Please submit your OpenAI API key first.")
|
114 |
-
return "Please submit your OpenAI API key first."
|
115 |
llm = OpenAI(model=model_name)
|
116 |
|
117 |
if qa_method == "default":
|
@@ -122,18 +109,25 @@ def run_qa(use_existed_corpus: bool, corpus_file: str, qa_method: str,
|
|
122 |
qa = advanced_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size)
|
123 |
else:
|
124 |
gr.Error("Unsupported QA method.")
|
125 |
-
return "Unsupported QA method."
|
|
|
|
|
126 |
|
127 |
-
qa.to_parquet(os.path.join(DATA_DIR, "qa.parquet"), os.path.join(DATA_DIR, "corpus.parquet"))
|
128 |
-
return "QA Creation Complete. Download at the bottom button."
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
def file_reset() -> str:
|
132 |
-
shutil.rmtree(FILE_DIR)
|
133 |
-
os.makedirs(FILE_DIR)
|
134 |
-
return "Files reset complete."
|
135 |
|
136 |
with gr.Blocks(theme="earneleh/paris") as demo:
|
|
|
|
|
|
|
137 |
gr.HTML("<h1>AutoRAG Data Creation 🛠️</h1>")
|
138 |
with gr.Row():
|
139 |
openai_key_textbox = gr.Textbox(label="Please input your OpenAI API key and press Enter.", type="password",
|
@@ -166,9 +160,8 @@ with gr.Blocks(theme="earneleh/paris") as demo:
|
|
166 |
label="Parsing Method", info="Choose parsing method that you want")
|
167 |
parse_button = gr.Button(value="Run Parsing")
|
168 |
parse_status = gr.Textbox(value="Not Started", interactive=False)
|
169 |
-
raw_download_button = gr.DownloadButton(value=
|
170 |
label="Download raw.parquet")
|
171 |
-
file_reset_button = gr.Button(value="Reset uploaded files")
|
172 |
|
173 |
with gr.Column(scale=1):
|
174 |
gr.Markdown(
|
@@ -185,7 +178,7 @@ with gr.Blocks(theme="earneleh/paris") as demo:
|
|
185 |
chunk_button = gr.Button(value="Run Chunking")
|
186 |
chunk_status = gr.Textbox(value="Not Started", interactive=False)
|
187 |
corpus_download_button = gr.DownloadButton(label="Download corpus.parquet",
|
188 |
-
value=
|
189 |
|
190 |
with gr.Column(scale=1):
|
191 |
gr.Markdown(
|
@@ -205,7 +198,7 @@ with gr.Blocks(theme="earneleh/paris") as demo:
|
|
205 |
run_qa_button = gr.Button(value="Run QA Creation")
|
206 |
qa_status = gr.Textbox(value="Not Started", interactive=False)
|
207 |
qa_download_button = gr.DownloadButton(label="Download qa.parquet",
|
208 |
-
value=
|
209 |
|
210 |
#================================================================================================#
|
211 |
# Logics
|
@@ -217,17 +210,19 @@ with gr.Blocks(theme="earneleh/paris") as demo:
|
|
217 |
openai_key_textbox.submit(on_submit_openai_key, inputs=[openai_key_textbox], outputs=api_key_status_box)
|
218 |
|
219 |
# Parsing
|
220 |
-
parse_button.click(run_parse, inputs=[document_file_input, parse_choice],
|
221 |
-
|
222 |
|
223 |
# Chunking
|
224 |
-
chunk_button.click(run_chunk, inputs=[use_previous_raw_file, raw_file_input, chunk_choice, chunk_size, chunk_overlap,
|
225 |
-
lang_choice],
|
226 |
-
outputs=chunk_status)
|
227 |
|
228 |
# QA Creation
|
229 |
-
run_qa_button.click(run_qa, inputs=[use_previous_corpus_file, corpus_file_input, qa_choice,
|
230 |
-
batch_size, lang_choice
|
|
|
|
|
231 |
|
232 |
# API Key visibility
|
233 |
parse_choice.change(change_visible_status_api_key, inputs=[parse_choice],
|
@@ -236,4 +231,6 @@ with gr.Blocks(theme="earneleh/paris") as demo:
|
|
236 |
upstage_key_textbox.submit(on_submit_upstage_key, inputs=[upstage_key_textbox], outputs=upstage_key_status_box)
|
237 |
|
238 |
|
239 |
-
|
|
|
|
|
|
1 |
import os
|
2 |
+
import tempfile
|
3 |
+
from typing import List, Callable
|
4 |
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
from autorag.data.parse import langchain_parse
|
8 |
+
from autorag.data.parse.base import _add_last_modified_datetime
|
9 |
from autorag.data.parse.llamaparse import llama_parse
|
10 |
from autorag.data.qa.schema import Raw
|
11 |
+
from autorag.utils import result_to_dataframe
|
12 |
from llama_index.llms.openai import OpenAI
|
13 |
|
14 |
from src.create import default_create, fast_create, advanced_create
|
15 |
from src.util import on_submit_openai_key, on_submit_llama_cloud_key, on_submit_upstage_key
|
16 |
|
17 |
+
@result_to_dataframe(["texts", "path", "page", "last_modified_datetime"])
|
18 |
+
def original_parse(fn: Callable, **kwargs):
|
19 |
+
result = fn(**kwargs)
|
20 |
+
result = _add_last_modified_datetime(result)
|
21 |
+
return result
|
|
|
|
|
|
|
22 |
|
23 |
def change_lang_choice(lang: str) -> str:
|
24 |
lang_dict = {
|
|
|
38 |
|
39 |
|
40 |
|
41 |
+
def run_parse(file_lists: List[str], parse_method: str, original_raw_df, progress=gr.Progress()):
|
42 |
# save an input file to a directory
|
43 |
+
|
|
|
44 |
progress(0.05)
|
45 |
+
langchain_parse_original = langchain_parse.__wrapped__
|
46 |
|
47 |
if parse_method in ["pdfminer", "pdfplumber", "pypdfium2", "pypdf", "pymupdf"]:
|
48 |
+
raw_df: pd.DataFrame = original_parse(langchain_parse_original,
|
49 |
+
data_path_list=file_lists, parse_method=parse_method)
|
50 |
elif parse_method == "llama-parse":
|
51 |
llama_cloud_api_key = os.getenv("LLAMA_CLOUD_API_KEY")
|
52 |
if llama_cloud_api_key is None:
|
53 |
+
return "Please submit your Llama Cloud API key first.", original_raw_df
|
54 |
+
raw_df: pd.DataFrame = original_parse(llama_parse.__wrapped__, data_path_list=file_lists)
|
55 |
elif parse_method == "upstage🇰🇷":
|
56 |
upstage_api_key = os.getenv("UPSTAGE_API_KEY")
|
57 |
if upstage_api_key is None:
|
58 |
+
return "Please submit your Upstage API key first.", original_raw_df
|
59 |
+
raw_df: pd.DataFrame = original_parse(langchain_parse_original,
|
60 |
+
data_path_list=file_lists, parse_method="upstagedocumentparse")
|
61 |
else:
|
62 |
+
return "Unsupported parse method.", original_raw_df
|
63 |
progress(0.8)
|
64 |
|
65 |
+
return "Parsing Complete. Download at the bottom button.", raw_df
|
|
|
66 |
|
67 |
|
68 |
+
def run_chunk(use_existed_raw: bool, raw_df: pd.DataFrame, raw_file: str, chunk_method: str, chunk_size: int, chunk_overlap: int,
|
69 |
+
lang: str = "English", original_corpus_df = None, progress=gr.Progress()):
|
70 |
lang = change_lang_choice(lang)
|
71 |
+
if not use_existed_raw:
|
72 |
+
raw_df = pd.read_parquet(raw_file, engine="pyarrow")
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
raw_instance = Raw(raw_df)
|
74 |
|
75 |
if chunk_method in ["Token", "Sentence"]:
|
|
|
84 |
add_file_name=lang, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
85 |
else:
|
86 |
gr.Error("Unsupported chunk method.")
|
87 |
+
return "Unsupported chunk method.", original_corpus_df
|
88 |
progress(0.8)
|
89 |
+
return "Chunking Complete. Download at the bottom button.", corpus.data
|
|
|
90 |
|
91 |
|
92 |
+
def run_qa(use_existed_corpus: bool, corpus_df: pd.DataFrame, corpus_file: str, qa_method: str,
|
93 |
+
model_name: str, qa_cnt: int, batch_size: int, lang: str = "English", original_qa_df = None,
|
94 |
+
progress=gr.Progress()):
|
95 |
lang = change_lang_choice(lang)
|
96 |
+
if not use_existed_corpus:
|
97 |
+
corpus_df = pd.read_parquet(corpus_file, engine="pyarrow")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
if os.getenv("OPENAI_API_KEY") is None:
|
100 |
gr.Error("Please submit your OpenAI API key first.")
|
101 |
+
return "Please submit your OpenAI API key first.", original_qa_df
|
102 |
llm = OpenAI(model=model_name)
|
103 |
|
104 |
if qa_method == "default":
|
|
|
109 |
qa = advanced_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size)
|
110 |
else:
|
111 |
gr.Error("Unsupported QA method.")
|
112 |
+
return "Unsupported QA method.", original_qa_df
|
113 |
+
|
114 |
+
return "QA Creation Complete. Download at the bottom button.", qa.data
|
115 |
|
|
|
|
|
116 |
|
117 |
+
def download_state(state: pd.DataFrame, change_name: str):
|
118 |
+
if state is None:
|
119 |
+
gr.Error("No data to download.")
|
120 |
+
return ""
|
121 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
122 |
+
filename = os.path.join(temp_dir, f"{change_name}.parquet")
|
123 |
+
state.to_parquet(filename, engine="pyarrow")
|
124 |
+
yield filename
|
125 |
|
|
|
|
|
|
|
|
|
126 |
|
127 |
with gr.Blocks(theme="earneleh/paris") as demo:
|
128 |
+
raw_df_state = gr.State()
|
129 |
+
corpus_df_state = gr.State()
|
130 |
+
qa_df_state = gr.State()
|
131 |
gr.HTML("<h1>AutoRAG Data Creation 🛠️</h1>")
|
132 |
with gr.Row():
|
133 |
openai_key_textbox = gr.Textbox(label="Please input your OpenAI API key and press Enter.", type="password",
|
|
|
160 |
label="Parsing Method", info="Choose parsing method that you want")
|
161 |
parse_button = gr.Button(value="Run Parsing")
|
162 |
parse_status = gr.Textbox(value="Not Started", interactive=False)
|
163 |
+
raw_download_button = gr.DownloadButton(value=download_state, inputs=[raw_df_state, gr.State("raw")],
|
164 |
label="Download raw.parquet")
|
|
|
165 |
|
166 |
with gr.Column(scale=1):
|
167 |
gr.Markdown(
|
|
|
178 |
chunk_button = gr.Button(value="Run Chunking")
|
179 |
chunk_status = gr.Textbox(value="Not Started", interactive=False)
|
180 |
corpus_download_button = gr.DownloadButton(label="Download corpus.parquet",
|
181 |
+
value=download_state, inputs=[corpus_df_state, gr.State("corpus")])
|
182 |
|
183 |
with gr.Column(scale=1):
|
184 |
gr.Markdown(
|
|
|
198 |
run_qa_button = gr.Button(value="Run QA Creation")
|
199 |
qa_status = gr.Textbox(value="Not Started", interactive=False)
|
200 |
qa_download_button = gr.DownloadButton(label="Download qa.parquet",
|
201 |
+
value=download_state, inputs=[qa_df_state, gr.State("qa")])
|
202 |
|
203 |
#================================================================================================#
|
204 |
# Logics
|
|
|
210 |
openai_key_textbox.submit(on_submit_openai_key, inputs=[openai_key_textbox], outputs=api_key_status_box)
|
211 |
|
212 |
# Parsing
|
213 |
+
parse_button.click(run_parse, inputs=[document_file_input, parse_choice, raw_df_state],
|
214 |
+
outputs=[parse_status, raw_df_state])
|
215 |
|
216 |
# Chunking
|
217 |
+
chunk_button.click(run_chunk, inputs=[use_previous_raw_file, raw_df_state, raw_file_input, chunk_choice, chunk_size, chunk_overlap,
|
218 |
+
lang_choice, corpus_df_state],
|
219 |
+
outputs=[chunk_status, corpus_df_state])
|
220 |
|
221 |
# QA Creation
|
222 |
+
run_qa_button.click(run_qa, inputs=[use_previous_corpus_file, corpus_df_state, corpus_file_input, qa_choice,
|
223 |
+
model_choice, qa_cnt, batch_size, lang_choice,
|
224 |
+
qa_df_state],
|
225 |
+
outputs=[qa_status, qa_df_state])
|
226 |
|
227 |
# API Key visibility
|
228 |
parse_choice.change(change_visible_status_api_key, inputs=[parse_choice],
|
|
|
231 |
upstage_key_textbox.submit(on_submit_upstage_key, inputs=[upstage_key_textbox], outputs=upstage_key_status_box)
|
232 |
|
233 |
|
234 |
+
# if __name__ == "__main__":
|
235 |
+
# demo.launch(share=False, debug=True)
|
236 |
+
demo.launch(share=False, debug=False)
|